Design Methodology for Unmanned Aerial Vehicle (UAV) Team Coordination

Unmanned Aerial Vehicle (UAV) systems, despite having no onboard human pilots, currently require extensive human involvement to accomplish successful mission operations. Further, successful operations also require extensive colalboration between mission stakeholders, including operators, miss...

Full description

Bibliographic Details
Main Authors: Cummings, M. L., da Silva, F. B., Scott, S. D.
Other Authors: Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Humans and Automation Laboratory
Format: Technical Report
Language:en_US
Published: MIT Humans and Automation Laboratory 2009
Online Access:http://hdl.handle.net/1721.1/46732
Description
Summary:Unmanned Aerial Vehicle (UAV) systems, despite having no onboard human pilots, currently require extensive human involvement to accomplish successful mission operations. Further, successful operations also require extensive colalboration between mission stakeholders, including operators, mission commanders, and information consumers (e.g. ground troops relying on intelligence reports in their area). Existing UAV system interfaces provide little to no support for collaboration between remote operators or for operators to collaborate with information consumers. As reliance on UAVs continues to increase in military and civilian operations, this lack of support for collaboration will likely become a substantial limitation of existing UAV systems. In order to introduce effective collaboration support to UAV system interfaces, it is essential to understand, and be able to derive system design requirements that address, the necessary group interactions that occur in UAV task enviroments. However, few collaborative requirements analysis methods exist, and to our knowledge, no method exists that captures design requirements for collaborative decision making in complex, time-critical environments. This report describes the development of a new design requirements analysis method for deriving information and functional requirements that address the collaboration needs of UAV (and other complex task) operators, and the needs of stakeholders interacting with these operators. More specifically, theis method extends a recently developed requirements analysis method, called the Hybrid Cognitive Task Analysis (CTA) method, which enables the generation of information and functional requirements for futuristic UAV system interfaces. The original Hybrid CTA method focused on deriving single user system interface requirements. This work extends this method by introducing analytic steps to identify task and decision-making dependencies between different UAV operations collaborators. This collaborative extension to the Hybrid CTA utilizes the notion of boundary objects, an analytic construct commonly used in the study of group work. Boundary objects are physical or information artifacts that cross the task boundaries between members of distinct groups. Identifying boundary objects in complex task operations help the analyst to identify task and decision-making dependencies between local and remote collaborators. Understanding these dependencies helps to identify information sharing requirements that the UAV system should support. This report describes the analytic steps of the collaborative extension, and provides background information on the original Hybrid CTA method and the boundary object construct. The report also describes a project in which the new design requirements method was used to revise a proposed set of UAV operator displays.