Insights into the role and mechanism of the AAA+ adaptor Clps

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2009.

Bibliographic Details
Main Author: Hou, Jennifer Yuan
Other Authors: Tania A. Baker.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2009
Subjects:
Online Access:http://hdl.handle.net/1721.1/46812
_version_ 1826203686621151232
author Hou, Jennifer Yuan
author2 Tania A. Baker.
author_facet Tania A. Baker.
Hou, Jennifer Yuan
author_sort Hou, Jennifer Yuan
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2009.
first_indexed 2024-09-23T12:41:44Z
format Thesis
id mit-1721.1/46812
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:41:44Z
publishDate 2009
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/468122019-04-10T16:47:22Z Insights into the role and mechanism of the AAA+ adaptor Clps Hou, Jennifer Yuan Tania A. Baker. Massachusetts Institute of Technology. Dept. of Biology. Massachusetts Institute of Technology. Dept. of Biology. Biology. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2009. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (p. 134-141). Protein degradation is a vital process in cells for quality control and participation in regulatory pathways. Intracellular ATP-dependent proteases are responsible for regulated degradation and are highly controlled in their function, especially with respect to substrate selectivity. Adaptor proteins that can associate with the proteases add an additional layer of control to substrate selection. Thus, understanding the mechanism and role of adaptor proteins is a critical component to understanding how proteases choose their substrates. In this thesis, I examine the role of the intracellular protease ClpAP and its adaptor ClpS in Escherichia coli. ClpS binds to the N-terminal domain of ClpA and plays dual roles in ClpAP substrate selectivity: ClpS inhibits the degradation of some substrates such as ssrA-tagged proteins and enhances the degradation of other substrates such as N-end-rule proteins. We wished to elucidate how ClpS influences ClpAP substrate selection, and found that the stoichiometry of ClpS binding to ClpA is one level of regulation. Furthermore, we demonstrated that the N-terminal extension of ClpS is vital for the adaptor's role in delivering N-end-rule substrates to ClpAP for degradation, but this extension is not required for inhibition of ssrA-tagged proteins. Truncation studies of the ClpS N-terminal extension showed a dramatic length-dependence on N-end-rule protein delivery, and the chemical composition of this portion of ClpS also affected the ability to degrade N-degron-bearing substrates. (cont.) Evidence suggests that ClpS allosterically affects the ClpA enzyme, causing a modulation in substrate specificity, and preliminary studies localized the point of contact by the ClpS N-terminal extension to the ClpA pore region. ClpS therefore represents a new type of adaptor protein that modulates substrate selection allosterically, rather than simply recruiting and tethering substrates to the protease. To further understand the role of ClpS and ClpAP in the cell, we conducted a proteomic-based search for ClpS-dependent ClpAP substrates. A list of putative substrates was generated from these experiments, and we believe that ClpAP plays a key role in quality control, perhaps through the degradation of N-end-rule substrates. Combined with mechanistic studies, these physiological studies aid in the understanding of how ClpS influences substrate recognition by ClpAP. by Jennifer Yuan Hou. Ph.D. 2009-09-24T20:49:29Z 2009-09-24T20:49:29Z 2009 2009 Thesis http://hdl.handle.net/1721.1/46812 433089497 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 141 p. application/pdf Massachusetts Institute of Technology
spellingShingle Biology.
Hou, Jennifer Yuan
Insights into the role and mechanism of the AAA+ adaptor Clps
title Insights into the role and mechanism of the AAA+ adaptor Clps
title_full Insights into the role and mechanism of the AAA+ adaptor Clps
title_fullStr Insights into the role and mechanism of the AAA+ adaptor Clps
title_full_unstemmed Insights into the role and mechanism of the AAA+ adaptor Clps
title_short Insights into the role and mechanism of the AAA+ adaptor Clps
title_sort insights into the role and mechanism of the aaa adaptor clps
topic Biology.
url http://hdl.handle.net/1721.1/46812
work_keys_str_mv AT houjenniferyuan insightsintotheroleandmechanismoftheaaaadaptorclps