Case analysis studies of diffusion models on E-commerce transaction data

Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management, 2009.

Bibliografiset tiedot
Päätekijät: Lewis, Taariq, Long, Bryan
Muut tekijät: Vivek Farias.
Aineistotyyppi: Opinnäyte
Kieli:eng
Julkaistu: Massachusetts Institute of Technology 2009
Aiheet:
Linkit:http://hdl.handle.net/1721.1/49772
_version_ 1826194702461829120
author Lewis, Taariq
Long, Bryan
author2 Vivek Farias.
author_facet Vivek Farias.
Lewis, Taariq
Long, Bryan
author_sort Lewis, Taariq
collection MIT
description Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management, 2009.
first_indexed 2024-09-23T10:00:22Z
format Thesis
id mit-1721.1/49772
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T10:00:22Z
publishDate 2009
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/497722019-04-11T06:37:46Z Case analysis studies of diffusion models on E-commerce transaction data Lewis, Taariq Long, Bryan Vivek Farias. Sloan School of Management. Sloan School of Management. Sloan School of Management. Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management, 2009. Includes bibliographical references (p. 50). As online merchants compete in the growing e-commerce markets for customers, attention to data generated from merchant and customer website interactions continues to drive ongoing online analytical innovation. However, successful online sales forecasting arising from historical transaction data still proves elusive for many online retailers. Although there are numerous software and statistical models used in online retail, not many practitioners claim success creating accurate online inventory management or marketing effectiveness forecast models. Thus, online retailers with both online and offline strategies express frustration that although they are able to predict sales in their offline properties, even with substantial online data, they are not as successful with their online-stores. This paper attempts to test two analytical approaches to determine whether reliable forecasting can be developed using already established statistical models. Firstly, we use the original Bass Model of Diffusion and modify it for analysis of online retail data. Then, we test the model's forecasting effectiveness to extrapolate expected sales in the following year. As a second method, we use statistical cluster analysis to categorize groups of products into distinct product performance groups. We then analyze those groups for distinct characteristics and then test whether we can forecast new product performance based on the identified group characteristics. (cont.) We partnered with a medium-sized online retail e-commerce firm with both online and offline retail channels to provide us with online transaction data. Using a modified Bass Diffusion Model, we were able to fit a sales forecast curve to a sample of products. We then used k-means cluster analysis to partition products into similar groups of sales transaction-behavior, over the period of 1 year. For each group, we tried to identify characteristics which we could use to forecast new product launch behavior. However, lack of accurate, characteristic mapping of products made it difficult to establish confidence in cluster forecasting for some groups with similar curves. With more accurate characteristic mapping of products, we're hopeful that cluster analysis can reasonably forecast new product performance in online retail catalogs. by Taariq Lewis [and] Bryan Long. M.B.A. 2009-11-06T16:33:03Z 2009-11-06T16:33:03Z 2009 2009 Thesis http://hdl.handle.net/1721.1/49772 457058649 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 50 p. application/pdf Massachusetts Institute of Technology
spellingShingle Sloan School of Management.
Lewis, Taariq
Long, Bryan
Case analysis studies of diffusion models on E-commerce transaction data
title Case analysis studies of diffusion models on E-commerce transaction data
title_full Case analysis studies of diffusion models on E-commerce transaction data
title_fullStr Case analysis studies of diffusion models on E-commerce transaction data
title_full_unstemmed Case analysis studies of diffusion models on E-commerce transaction data
title_short Case analysis studies of diffusion models on E-commerce transaction data
title_sort case analysis studies of diffusion models on e commerce transaction data
topic Sloan School of Management.
url http://hdl.handle.net/1721.1/49772
work_keys_str_mv AT lewistaariq caseanalysisstudiesofdiffusionmodelsonecommercetransactiondata
AT longbryan caseanalysisstudiesofdiffusionmodelsonecommercetransactiondata