A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2009.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/50085 |
_version_ | 1826202756679991296 |
---|---|
author | Awwad, Ghassan Samir |
author2 | Charles Fine and David Simchi-Levi. |
author_facet | Charles Fine and David Simchi-Levi. Awwad, Ghassan Samir |
author_sort | Awwad, Ghassan Samir |
collection | MIT |
description | Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2009. |
first_indexed | 2024-09-23T12:17:35Z |
format | Thesis |
id | mit-1721.1/50085 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T12:17:35Z |
publishDate | 2009 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/500852022-01-28T20:01:23Z A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry Awwad, Ghassan Samir Charles Fine and David Simchi-Levi. Leaders for Manufacturing Program. Leaders for Manufacturing Program at MIT Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Sloan School of Management Sloan School of Management. Civil and Environmental Engineering. Leaders for Manufacturing Program. Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2009. Includes bibliographical references (p. 48). Selecting and executing the optimal strategy for developing new products is a non trivial task, especially for low volume, high complexity products in a highly volatile global industry such as Fluid Management. At Fluid Management Corporation (FMC), Trucks and Equipment (T&E) that are used to deliver services both onshore and offshore currently follow a single product development model: In-house design; Outsourced prototyping, testing, and manufacturing. The objective of this research work is to challenge the status quo and to provide FMC with a practical framework that helps to determine the optimal development strategy. Rather than following a single development strategy for the entire portfolio of trucks and equipment products, the new methodology recommends a development strategy at a product functionality level and product feature level. Product development strategy is defined here using three dimensions: Design strategy; Manufacturing strategy; and Supply Chain strategy. Each functionality or feature is evaluated using a set of six criteria which then maps that functionality or feature to a specific recommended location on a three dimensional strategy cube. The set of evaluation criteria were derived from exploring and analyzing the current product development process, and from benchmarking world class companies from a wide range of different industries. The results show that for functionalities and features that differentiate FMC from its competitors and are viewed as core competencies, FMC should consider in sourcing the design, prototyping, and testing processes. (cont.) These functionalities include blending, pumping, software development, and system integration. Similarly, for functionalities and features that are not viewed as core competencies such as transport units, storage, and power generation, FMC should consider outsourcing the development process including design. by Ghassan Awwad. S.M. M.B.A. 2009-12-10T19:10:13Z 2009-12-10T19:10:13Z 2009 2009 Thesis http://hdl.handle.net/1721.1/50085 458562748 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 48 p. application/pdf Massachusetts Institute of Technology |
spellingShingle | Sloan School of Management. Civil and Environmental Engineering. Leaders for Manufacturing Program. Awwad, Ghassan Samir A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry |
title | A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry |
title_full | A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry |
title_fullStr | A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry |
title_full_unstemmed | A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry |
title_short | A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry |
title_sort | framework for developing manufacturing and sourcing trucks equipment in a global fluid management industry |
topic | Sloan School of Management. Civil and Environmental Engineering. Leaders for Manufacturing Program. |
url | http://hdl.handle.net/1721.1/50085 |
work_keys_str_mv | AT awwadghassansamir aframeworkfordevelopingmanufacturingandsourcingtrucksequipmentinaglobalfluidmanagementindustry AT awwadghassansamir frameworkfordevelopingmanufacturingandsourcingtrucksequipmentinaglobalfluidmanagementindustry |