22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006
Basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. Techniques and software for statistical sampling, simulation, data analysis and visualization. Use of statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and con...
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Learning Object |
Language: | en-US |
Published: |
2006
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/50265 |
_version_ | 1826216413739614208 |
---|---|
author | Yip, Sidney Beers, Kenneth J. Buehler, Markus J. Hadjiconstantinou, Nicolas G (Nicholas George) Mirny, Leonid A. Bazant, Martin Z. Marzari, Nicola Powell, Adam C. Radovitzky, Raul A. Rosales, Rodolfo Ulm, F.-J. (Franz-Josef) |
author2 | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering |
author_facet | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering Yip, Sidney Beers, Kenneth J. Buehler, Markus J. Hadjiconstantinou, Nicolas G (Nicholas George) Mirny, Leonid A. Bazant, Martin Z. Marzari, Nicola Powell, Adam C. Radovitzky, Raul A. Rosales, Rodolfo Ulm, F.-J. (Franz-Josef) |
author_sort | Yip, Sidney |
collection | MIT |
description | Basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. Techniques and software for statistical sampling, simulation, data analysis and visualization. Use of statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and continuum methods to study fundamental physical phenomena encountered in the fields of computational physics, chemistry, mechanics, materials science, biology, and applied mathematics. Applications drawn from a range of disciplines to build a broad-based understanding of complex structures and interactions in problems where simulation is on equal-footing with theory and experiment. Term project allows development of individual interest. Student mentoring by a coordinated team of participating faculty from across the Institute. |
first_indexed | 2024-09-23T16:47:16Z |
format | Learning Object |
id | mit-1721.1/50265 |
institution | Massachusetts Institute of Technology |
language | en-US |
last_indexed | 2025-03-10T14:08:09Z |
publishDate | 2006 |
record_format | dspace |
spelling | mit-1721.1/502652025-02-21T20:33:26Z 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 Introduction to Modeling and Simulation Yip, Sidney Beers, Kenneth J. Buehler, Markus J. Hadjiconstantinou, Nicolas G (Nicholas George) Mirny, Leonid A. Bazant, Martin Z. Marzari, Nicola Powell, Adam C. Radovitzky, Raul A. Rosales, Rodolfo Ulm, F.-J. (Franz-Josef) Massachusetts Institute of Technology. Department of Nuclear Science and Engineering Massachusetts Institute of Technology. Department of Chemical Engineering Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Harvard University--MIT Division of Health Sciences and Technology Massachusetts Institute of Technology. Department of Materials Science and Engineering Massachusetts Institute of Technology. Department of Mathematics Massachusetts Institute of Technology. Department of Mechanical Engineering computer modeling discrete particle system continuum continuum field statistical sampling data analysis visualization quantum quantum method chemical molecular dynamics Monte Carlo mesoscale continuum method computational physics chemistry mechanics materials science fluid dynamics heat fractal evolution melting gas structural mechanics FEM finite element biology applied mathematics 1.021J 1.021 2.030J 2.030 3.021J 3.021 10.333J 10.333 18.361J 18.361 HST.558J HST.588 22.00J 22.00 Basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. Techniques and software for statistical sampling, simulation, data analysis and visualization. Use of statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and continuum methods to study fundamental physical phenomena encountered in the fields of computational physics, chemistry, mechanics, materials science, biology, and applied mathematics. Applications drawn from a range of disciplines to build a broad-based understanding of complex structures and interactions in problems where simulation is on equal-footing with theory and experiment. Term project allows development of individual interest. Student mentoring by a coordinated team of participating faculty from across the Institute. 2006-06 Learning Object 22.00J-Spring2006 local: 22.00J local: 1.021J local: 2.030J local: 3.021J local: 10.333J local: 18.361J local: HST.558J local: IMSCP-MD5-f91e1f7b4865a2c67e468b1ffb37fd0f http://hdl.handle.net/1721.1/50265 en-US Usage Restrictions: This site (c) Massachusetts Institute of Technology 2003. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license"). The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. text/html Spring 2006 |
spellingShingle | computer modeling discrete particle system continuum continuum field statistical sampling data analysis visualization quantum quantum method chemical molecular dynamics Monte Carlo mesoscale continuum method computational physics chemistry mechanics materials science fluid dynamics heat fractal evolution melting gas structural mechanics FEM finite element biology applied mathematics 1.021J 1.021 2.030J 2.030 3.021J 3.021 10.333J 10.333 18.361J 18.361 HST.558J HST.588 22.00J 22.00 Yip, Sidney Beers, Kenneth J. Buehler, Markus J. Hadjiconstantinou, Nicolas G (Nicholas George) Mirny, Leonid A. Bazant, Martin Z. Marzari, Nicola Powell, Adam C. Radovitzky, Raul A. Rosales, Rodolfo Ulm, F.-J. (Franz-Josef) 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 |
title | 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 |
title_full | 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 |
title_fullStr | 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 |
title_full_unstemmed | 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 |
title_short | 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 |
title_sort | 22 00j 1 021j 2 030j 3 021j 10 333j 18 361j hst 558j introduction to modeling and simulation spring 2006 |
topic | computer modeling discrete particle system continuum continuum field statistical sampling data analysis visualization quantum quantum method chemical molecular dynamics Monte Carlo mesoscale continuum method computational physics chemistry mechanics materials science fluid dynamics heat fractal evolution melting gas structural mechanics FEM finite element biology applied mathematics 1.021J 1.021 2.030J 2.030 3.021J 3.021 10.333J 10.333 18.361J 18.361 HST.558J HST.588 22.00J 22.00 |
url | http://hdl.handle.net/1721.1/50265 |
work_keys_str_mv | AT yipsidney 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT beerskennethj 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT buehlermarkusj 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT hadjiconstantinounicolasgnicholasgeorge 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT mirnyleonida 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT bazantmartinz 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT marzarinicola 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT powelladamc 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT radovitzkyraula 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT rosalesrodolfo 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT ulmfjfranzjosef 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006 AT yipsidney introductiontomodelingandsimulation AT beerskennethj introductiontomodelingandsimulation AT buehlermarkusj introductiontomodelingandsimulation AT hadjiconstantinounicolasgnicholasgeorge introductiontomodelingandsimulation AT mirnyleonida introductiontomodelingandsimulation AT bazantmartinz introductiontomodelingandsimulation AT marzarinicola introductiontomodelingandsimulation AT powelladamc introductiontomodelingandsimulation AT radovitzkyraula introductiontomodelingandsimulation AT rosalesrodolfo introductiontomodelingandsimulation AT ulmfjfranzjosef introductiontomodelingandsimulation |