22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006

Basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. Techniques and software for statistical sampling, simulation, data analysis and visualization. Use of statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and con...

Full description

Bibliographic Details
Main Authors: Yip, Sidney, Beers, Kenneth J., Buehler, Markus J., Hadjiconstantinou, Nicolas G (Nicholas George), Mirny, Leonid A., Bazant, Martin Z., Marzari, Nicola, Powell, Adam C., Radovitzky, Raul A., Rosales, Rodolfo, Ulm, F.-J. (Franz-Josef)
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Format: Learning Object
Language:en-US
Published: 2006
Subjects:
Online Access:http://hdl.handle.net/1721.1/50265
_version_ 1826216413739614208
author Yip, Sidney
Beers, Kenneth J.
Buehler, Markus J.
Hadjiconstantinou, Nicolas G (Nicholas George)
Mirny, Leonid A.
Bazant, Martin Z.
Marzari, Nicola
Powell, Adam C.
Radovitzky, Raul A.
Rosales, Rodolfo
Ulm, F.-J. (Franz-Josef)
author2 Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
author_facet Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Yip, Sidney
Beers, Kenneth J.
Buehler, Markus J.
Hadjiconstantinou, Nicolas G (Nicholas George)
Mirny, Leonid A.
Bazant, Martin Z.
Marzari, Nicola
Powell, Adam C.
Radovitzky, Raul A.
Rosales, Rodolfo
Ulm, F.-J. (Franz-Josef)
author_sort Yip, Sidney
collection MIT
description Basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. Techniques and software for statistical sampling, simulation, data analysis and visualization. Use of statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and continuum methods to study fundamental physical phenomena encountered in the fields of computational physics, chemistry, mechanics, materials science, biology, and applied mathematics. Applications drawn from a range of disciplines to build a broad-based understanding of complex structures and interactions in problems where simulation is on equal-footing with theory and experiment. Term project allows development of individual interest. Student mentoring by a coordinated team of participating faculty from across the Institute.
first_indexed 2024-09-23T16:47:16Z
format Learning Object
id mit-1721.1/50265
institution Massachusetts Institute of Technology
language en-US
last_indexed 2025-03-10T14:08:09Z
publishDate 2006
record_format dspace
spelling mit-1721.1/502652025-02-21T20:33:26Z 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006 Introduction to Modeling and Simulation Yip, Sidney Beers, Kenneth J. Buehler, Markus J. Hadjiconstantinou, Nicolas G (Nicholas George) Mirny, Leonid A. Bazant, Martin Z. Marzari, Nicola Powell, Adam C. Radovitzky, Raul A. Rosales, Rodolfo Ulm, F.-J. (Franz-Josef) Massachusetts Institute of Technology. Department of Nuclear Science and Engineering Massachusetts Institute of Technology. Department of Chemical Engineering Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Harvard University--MIT Division of Health Sciences and Technology Massachusetts Institute of Technology. Department of Materials Science and Engineering Massachusetts Institute of Technology. Department of Mathematics Massachusetts Institute of Technology. Department of Mechanical Engineering computer modeling discrete particle system continuum continuum field statistical sampling data analysis visualization quantum quantum method chemical molecular dynamics Monte Carlo mesoscale continuum method computational physics chemistry mechanics materials science fluid dynamics heat fractal evolution melting gas structural mechanics FEM finite element biology applied mathematics 1.021J 1.021 2.030J 2.030 3.021J 3.021 10.333J 10.333 18.361J 18.361 HST.558J HST.588 22.00J 22.00 Basic concepts of computer modeling in science and engineering using discrete particle systems and continuum fields. Techniques and software for statistical sampling, simulation, data analysis and visualization. Use of statistical, quantum chemical, molecular dynamics, Monte Carlo, mesoscale and continuum methods to study fundamental physical phenomena encountered in the fields of computational physics, chemistry, mechanics, materials science, biology, and applied mathematics. Applications drawn from a range of disciplines to build a broad-based understanding of complex structures and interactions in problems where simulation is on equal-footing with theory and experiment. Term project allows development of individual interest. Student mentoring by a coordinated team of participating faculty from across the Institute. 2006-06 Learning Object 22.00J-Spring2006 local: 22.00J local: 1.021J local: 2.030J local: 3.021J local: 10.333J local: 18.361J local: HST.558J local: IMSCP-MD5-f91e1f7b4865a2c67e468b1ffb37fd0f http://hdl.handle.net/1721.1/50265 en-US Usage Restrictions: This site (c) Massachusetts Institute of Technology 2003. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license"). The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. text/html Spring 2006
spellingShingle computer modeling
discrete particle system
continuum
continuum field
statistical sampling
data analysis
visualization
quantum
quantum method
chemical
molecular dynamics
Monte Carlo
mesoscale
continuum method
computational physics
chemistry
mechanics
materials science
fluid dynamics
heat
fractal
evolution
melting
gas
structural mechanics
FEM
finite element
biology
applied mathematics
1.021J
1.021
2.030J
2.030
3.021J
3.021
10.333J
10.333
18.361J
18.361
HST.558J
HST.588
22.00J
22.00
Yip, Sidney
Beers, Kenneth J.
Buehler, Markus J.
Hadjiconstantinou, Nicolas G (Nicholas George)
Mirny, Leonid A.
Bazant, Martin Z.
Marzari, Nicola
Powell, Adam C.
Radovitzky, Raul A.
Rosales, Rodolfo
Ulm, F.-J. (Franz-Josef)
22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006
title 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006
title_full 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006
title_fullStr 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006
title_full_unstemmed 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006
title_short 22.00J / 1.021J / 2.030J / 3.021J / 10.333J / 18.361J / HST.558J Introduction to Modeling and Simulation, Spring 2006
title_sort 22 00j 1 021j 2 030j 3 021j 10 333j 18 361j hst 558j introduction to modeling and simulation spring 2006
topic computer modeling
discrete particle system
continuum
continuum field
statistical sampling
data analysis
visualization
quantum
quantum method
chemical
molecular dynamics
Monte Carlo
mesoscale
continuum method
computational physics
chemistry
mechanics
materials science
fluid dynamics
heat
fractal
evolution
melting
gas
structural mechanics
FEM
finite element
biology
applied mathematics
1.021J
1.021
2.030J
2.030
3.021J
3.021
10.333J
10.333
18.361J
18.361
HST.558J
HST.588
22.00J
22.00
url http://hdl.handle.net/1721.1/50265
work_keys_str_mv AT yipsidney 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT beerskennethj 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT buehlermarkusj 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT hadjiconstantinounicolasgnicholasgeorge 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT mirnyleonida 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT bazantmartinz 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT marzarinicola 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT powelladamc 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT radovitzkyraula 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT rosalesrodolfo 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT ulmfjfranzjosef 2200j1021j2030j3021j10333j18361jhst558jintroductiontomodelingandsimulationspring2006
AT yipsidney introductiontomodelingandsimulation
AT beerskennethj introductiontomodelingandsimulation
AT buehlermarkusj introductiontomodelingandsimulation
AT hadjiconstantinounicolasgnicholasgeorge introductiontomodelingandsimulation
AT mirnyleonida introductiontomodelingandsimulation
AT bazantmartinz introductiontomodelingandsimulation
AT marzarinicola introductiontomodelingandsimulation
AT powelladamc introductiontomodelingandsimulation
AT radovitzkyraula introductiontomodelingandsimulation
AT rosalesrodolfo introductiontomodelingandsimulation
AT ulmfjfranzjosef introductiontomodelingandsimulation