Modeling and design of reload LWR cores for an ultra-long operating cycle

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1998.

Bibliographic Details
Main Author: McMahon, Michael Vincent
Other Authors: Michael J. Driscoll and Neil E. Todreas.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/50460
_version_ 1826210000848027648
author McMahon, Michael Vincent
author2 Michael J. Driscoll and Neil E. Todreas.
author_facet Michael J. Driscoll and Neil E. Todreas.
McMahon, Michael Vincent
author_sort McMahon, Michael Vincent
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1998.
first_indexed 2024-09-23T14:39:30Z
format Thesis
id mit-1721.1/50460
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T14:39:30Z
publishDate 2010
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/504602020-08-24T14:42:21Z Modeling and design of reload LWR cores for an ultra-long operating cycle Modeling and design of reload light water reactor cores for an ultra-long operating cycle McMahon, Michael Vincent Michael J. Driscoll and Neil E. Todreas. Massachusetts Institute of Technology. Dept. of Nuclear Engineering Nuclear Engineering Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1998. Includes bibliographical references (p. 193-198). The purpose of this research was to use state-of-the-art nuclear and fuel performance design packages to develop extended cycle cores for existing Light Water Reactor (LWR) designs which respect current fuel burnup limits while considering the full range of practical design and economic considerations. The driving force behind this research was the desire to make nuclear power more economically competitive with fossil fuel options by permitting higher plant capacity factors. In this thesis, reference cores for a 38.8 Effective Full Power Month (EFPM) PWR cycle and a 45 EFPM BWR cycle were developed and evaluated. To achieve these cycle lengths the designs use a single batch reloading strategy and contain fuel with enrichments as high as 7.4W/0 U2 3 5 (exceeding the current licensing limit of 5W/). The PWR design uses gadolinium oxide (Gd20 3) and IFBA (Integral Fuel Burnable Absorbers - a thin fuel pellet surface coating of ZrB2) as burnable poisons to hold down excess reactivity and to control power peaking. The BWR employs only Gd203. Both core designs require higher worth control rods in order to meet shutdown safety requirements. Fuel performance issues were also investigated. The presence of high burnup fuel assemblies in areas of greater-than core-average power leads to fuel performance concerns which must be carefully addressed. The effects of waterside corrosion, increased fission gas pressure, and intensified cladding strain in these assemblies must be carefully quantified. Steady state-analyses of fuel pin internal pressure performed on the PWR design show acceptable fuel pin performance. Fuel performance areas requiring further research were highlighted. Economic calculations show that extended cycle, single batch loaded cores have a fuel cost that is $13 million to $17 million per year more expensive than an optimized multi-batch strategy. This deficit would have to be made up from the net benefits of a higher capacity factor (e.g., less replacement energy, fewer refueling outages) levelized over plant lifetime. by Michael Vincent McMahon. Ph.D. 2010-01-07T20:41:56Z 2010-01-07T20:41:56Z 1998 1998 Thesis http://hdl.handle.net/1721.1/50460 42139247 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 238 p. application/pdf Massachusetts Institute of Technology
spellingShingle Nuclear Engineering
McMahon, Michael Vincent
Modeling and design of reload LWR cores for an ultra-long operating cycle
title Modeling and design of reload LWR cores for an ultra-long operating cycle
title_full Modeling and design of reload LWR cores for an ultra-long operating cycle
title_fullStr Modeling and design of reload LWR cores for an ultra-long operating cycle
title_full_unstemmed Modeling and design of reload LWR cores for an ultra-long operating cycle
title_short Modeling and design of reload LWR cores for an ultra-long operating cycle
title_sort modeling and design of reload lwr cores for an ultra long operating cycle
topic Nuclear Engineering
url http://hdl.handle.net/1721.1/50460
work_keys_str_mv AT mcmahonmichaelvincent modelinganddesignofreloadlwrcoresforanultralongoperatingcycle
AT mcmahonmichaelvincent modelinganddesignofreloadlightwaterreactorcoresforanultralongoperatingcycle