Coherent scattering from a free gas

We investigate decoherence in atom interferometry due to scattering from a background gas and show that the supposition that residual coherence is due to near-forward scattering is incorrect. In fact, the coherent part is completely unscattered, although it is phase shifted. This recoil-free process...

Full description

Bibliographic Details
Main Authors: Sanders, Scott N., Mintert, Florian, Heller, Eric J.
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: American Physical Society 2010
Online Access:http://hdl.handle.net/1721.1/51069
Description
Summary:We investigate decoherence in atom interferometry due to scattering from a background gas and show that the supposition that residual coherence is due to near-forward scattering is incorrect. In fact, the coherent part is completely unscattered, although it is phase shifted. This recoil-free process leaves both the atom and the gas in an unchanged state, but allows for the acquisition of a phase shift. This is essential to understanding decoherence in a separated-arm atom interferometer, where a gas of atoms forms a refractive medium for a matter wave. Our work elucidates the actual microscopic, many-body, quantum-mechanical scattering mechanism that gives rise to prior phenomenological results for the phase shift and decoherence.