Electron-ion thermal equilibration after spherical shock collapse
A comprehensive set of dual nuclear product observations provides a snapshot of imploding inertial confinement fusion capsules at the time of shock collapse, shortly before the final stages of compression. The collapse of strong convergent shocks at the center of spherical capsules filled with D[sub...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2010
|
Online Access: | http://hdl.handle.net/1721.1/51070 https://orcid.org/0000-0002-6919-4881 https://orcid.org/0000-0002-1020-3501 |
Summary: | A comprehensive set of dual nuclear product observations provides a snapshot of imploding inertial confinement fusion capsules at the time of shock collapse, shortly before the final stages of compression. The collapse of strong convergent shocks at the center of spherical capsules filled with D[subscript 2] and [subscript 3]He gases induces D-D and D-[superscript 3]He nuclear production. Temporal and spectral diagnostics of products from both reactions are used to measure shock timing, temperature, and capsule areal density. The density and temperature inferred from these measurements are used to estimate the electron-ion thermal coupling and demonstrate a lower electron-ion relaxation rate for capsules with lower initial gas density. |
---|