Fission Barriers of Compound Superheavy Nuclei

The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional...

Full description

Bibliographic Details
Main Authors: Sheikh, J. A., Nazarewicz, W., Kerman, Arthur Kent, Pei, J. C.
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics
Format: Article
Language:en_US
Published: American Physical Society 2010
Online Access:http://hdl.handle.net/1721.1/51380
Description
Summary:The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for [superscript 264]Fm, [superscript 272]Ds, [superscript 278]112, [superscript 292]114, and [superscript 312]124. For nuclei around 278112 produced in “cold-fusion” reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around [superscript 292]114 synthesized in “hot-fusion” experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.