Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.

Bibliographic Details
Main Author: Kulling, Karl Christian
Other Authors: Jonathan P. How.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/51675
_version_ 1811072605653827584
author Kulling, Karl Christian
author2 Jonathan P. How.
author_facet Jonathan P. How.
Kulling, Karl Christian
author_sort Kulling, Karl Christian
collection MIT
description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.
first_indexed 2024-09-23T09:08:43Z
format Thesis
id mit-1721.1/51675
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T09:08:43Z
publishDate 2010
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/516752019-04-10T21:00:09Z Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments Kulling, Karl Christian Jonathan P. How. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Includes bibliographical references (p. 97-100). This thesis presents new algorithms for path planning in a communications constrained environment for teams of unmanned vehicles. This problem involves a lead vehicle that must gather information from a set of locations and relay it back to its operator. In general, these locations and the lead vehicle's position are beyond line of-sight from the operator and non-stationary, which introduces several difficulties to the problem. The proposed solution is to use several additional unmanned vehicles to create a network linkage between the operator and the lead vehicle that can be used to relay information between the two endpoints. Because the operating environment is cluttered with obstacles that block both line-of-sight and vehicle movement, the paths of the vehicles must be carefully planned to meet all constraints. The core problem of interest that is addressed in this thesis is the path planning for these link vehicles. Two solutions are presented in this thesis. The first is a centralized approach based on a numerical solution of optimal control theory. This thesis presents an optimal control problem formulation that balances the competing objectives of minimizing overall mission time and minimizing energy expenditure. Also presented is a new modification of the Rapidly-Exploring Random Tree algorithm that makes it more efficient at finding paths that are applicable to the communications chaining problem. The second solution takes a distributed, receding-horizon approach, where each vehicle solves for its own path using a local optimization that helps the system as a whole achieve the global objective. (cont.) This solution is applicable to real-time use onboard a team of vehicles. To offset the loss of optimality from this approach, a new heuristic is developed for the linking vehicles. Finally, both solutions are demonstrated in simulation and in flight tests in MIT's RAVEN testbed. These simulations and flight tests demonstrate the performance of the two solution methods as well as their viability for use in real unmanned vehicle systems. by Karl Christian Kulling. S.M. 2010-02-09T19:50:21Z 2010-02-09T19:50:21Z 2009 2009 Thesis http://hdl.handle.net/1721.1/51675 496289268 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 100 p application/pdf Massachusetts Institute of Technology
spellingShingle Aeronautics and Astronautics.
Kulling, Karl Christian
Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments
title Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments
title_full Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments
title_fullStr Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments
title_full_unstemmed Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments
title_short Optimal and receding-horizon path planning algorithms for communications relay vehicles in complex environments
title_sort optimal and receding horizon path planning algorithms for communications relay vehicles in complex environments
topic Aeronautics and Astronautics.
url http://hdl.handle.net/1721.1/51675
work_keys_str_mv AT kullingkarlchristian optimalandrecedinghorizonpathplanningalgorithmsforcommunicationsrelayvehiclesincomplexenvironments