All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data
We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50–1100 Hz and with the frequency’s time derivative in the range -5×10[superscript -9]–0 Hz s[superscript -1]. Data from the first eight months of the fifth LIGO science run (S5) have been...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2010
|
Online Access: | http://hdl.handle.net/1721.1/51849 https://orcid.org/0000-0003-0219-9706 https://orcid.org/0000-0001-6550-3045 https://orcid.org/0000-0002-4147-2560 https://orcid.org/0000-0001-8459-4499 https://orcid.org/0000-0002-2544-1596 https://orcid.org/0000-0003-1983-3187 |
Summary: | We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50–1100 Hz and with the frequency’s time derivative in the range -5×10[superscript -9]–0 Hz s[superscript -1]. Data from the first eight months of the fifth LIGO science run (S5) have been used in this search, which is based on a semicoherent method (PowerFlux) of summing strain power. Observing no evidence of periodic gravitational radiation, we report 95% confidence-level upper limits on radiation emitted by any unknown isolated rotating neutron stars within the search range. Strain limits below 10[superscript -24] are obtained over a 200-Hz band, and the sensitivity improvement over previous searches increases the spatial volume sampled by an average factor of about 100 over the entire search band. For a neutron star with nominal equatorial ellipticity of 10[superscript -6], the search is sensitive to distances as great as 500 pc. |
---|