Producing Squeezed Input States for an Atomic Clock Using an Optical Cavity
Spin squeezing, the generation of collective states of atomic ensembles with reduced spin noise by exploiting non-classical correlations between particles, is a promising approach to overcoming the standard quantum limit set by projection noise of independent atoms. We present two implementations of...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2010
|
Online Access: | http://hdl.handle.net/1721.1/52386 https://orcid.org/0000-0002-9786-0538 |
Summary: | Spin squeezing, the generation of collective states of atomic ensembles with reduced spin noise by exploiting non-classical correlations between particles, is a promising approach to overcoming the standard quantum limit set by projection noise of independent atoms. We present two implementations of spin squeezing in ensembles of [superscript 87]Rb confined within an optical resonator, and discuss some of the decoherence mechanisms, both technical and fundamental, that we encounter. |
---|