Role of reactive oxygen species in low level light therapy

This review will focus on the role of reactive oxygen species in the cellular and tissue effects of low level light therapy (LLLT). Coincidentally with the increase in electron transport and in ATP, there has also been observed by intracellular fluorescent probes and electron spin resonance an in...

Full description

Bibliographic Details
Main Authors: Hamblin, Michael R., Arany, Praveen R., Huang, Ying-Ying, Chen, Aaron Chih-Hao
Other Authors: Harvard University--MIT Division of Health Sciences and Technology
Format: Article
Language:en_US
Published: The International Society for Optical Engineering 2010
Online Access:http://hdl.handle.net/1721.1/52743
Description
Summary:This review will focus on the role of reactive oxygen species in the cellular and tissue effects of low level light therapy (LLLT). Coincidentally with the increase in electron transport and in ATP, there has also been observed by intracellular fluorescent probes and electron spin resonance an increase in intracellular reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, singlet oxygen and hydroxyl radical. ROS scavengers, antioxidants and ROS quenchers block many LLLT processes. It has been proposed that light between 400-500- nm may produce ROS by a photosensitization process involving flavins, while longer wavelengths may directly produce ROS from the mitochondria. Several redox-sensitive transcription factors are known such as NF-kB and AP1, that are able to initiate transcription of genes involved in protective responses to oxidative stress. It may be the case that LLLT can be pro-oxidant in the short-term, but anti-oxidant in the long-term.