The winch-bot: A cable-suspended, under-actuated robot utilizing parametric self-excitation
A simple, compact, yet powerful robotic winch, called ldquoWinch-Bot,rdquo is presented in this paper. The Winch-Bot is an underactuated robot having only one controllable axis. Although hanging a load with merely one cable, it is capable of moving it in a large workspace by swinging the load dynami...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2010
|
Online Access: | http://hdl.handle.net/1721.1/53726 https://orcid.org/0000-0003-3155-6223 |
Summary: | A simple, compact, yet powerful robotic winch, called ldquoWinch-Bot,rdquo is presented in this paper. The Winch-Bot is an underactuated robot having only one controllable axis. Although hanging a load with merely one cable, it is capable of moving it in a large workspace by swinging the load dynamically based on parametric self-excitation. The generated trajectories can be used for a variety of tasks, from moving material to cyclic inspection of surfaces. The basic principle and design concept of the Winch-Bot are first described, followed by dynamic modeling and analysis. Two trajectory generation problems are solved. One is point-to-point transfer of a load, and the other is the tracking of a continuous path. It will be shown that the system can track a given geometric trajectory, although the tracking velocity cannot be determined arbitrarily due to the underactuated nature of dynamics. A prototype Winch-Bot is designed and built, and point-to-point, continuous path, and parametric excitation control are implemented. |
---|