Filling holes in triangular meshes by curve unfolding

We propose a novel approach to automatically fill holes in triangulated models. Each hole is filled using a minimum energy surface that is obtained in three steps. First, we unfold the hole boundary onto a plane using energy minimization. Second, we triangulate the unfolded hole using a constrained...

Full description

Bibliographic Details
Main Authors: Brunton, Alan, Wuhrer, Stefanie, Shu, Chang, Bose, Prosenjit, Demaine, Erik D.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/53749
https://orcid.org/0000-0003-3803-5703
Description
Summary:We propose a novel approach to automatically fill holes in triangulated models. Each hole is filled using a minimum energy surface that is obtained in three steps. First, we unfold the hole boundary onto a plane using energy minimization. Second, we triangulate the unfolded hole using a constrained Delaunay triangulation. Third, we embed the triangular mesh as a minimum energy surface in Ropf[superscript 3]. The running time of the method depends primarily on the size of the hole boundary and not on the size of the model, thereby making the method applicable to large models. Our experiments demonstrate the applicability of the algorithm to the problem of filling holes bounded by highly curved boundaries in large models.