Dispersion cancellation with phase-sensitive Gaussian-state light

Franson’s paradigm for nonlocal dispersion cancellation [J. D. Franson, Phys. Rev. A 45, 3126 (1992)] is studied using two kinds of jointly Gaussian-state signal and reference beams with phase-sensitive cross correlations. The first joint signal-reference state is nonclassical, with a phase-sensitiv...

Full description

Bibliographic Details
Main Author: Shapiro, Jeffrey H.
Other Authors: Massachusetts Institute of Technology. Research Laboratory of Electronics
Format: Article
Language:en_US
Published: American Physical Society 2010
Online Access:http://hdl.handle.net/1721.1/55984
https://orcid.org/0000-0002-6094-5861
Description
Summary:Franson’s paradigm for nonlocal dispersion cancellation [J. D. Franson, Phys. Rev. A 45, 3126 (1992)] is studied using two kinds of jointly Gaussian-state signal and reference beams with phase-sensitive cross correlations. The first joint signal-reference state is nonclassical, with a phase-sensitive cross correlation that is at the ultimate quantum-mechanical limit. It models the outputs obtained from continuous-wave spontaneous parametric down-conversion. The second joint signal-reference state is classical—it has a proper P representation—with a phase-sensitive cross correlation that is at the limit set by classical physics. Using these states we show that a version of Franson’s nonlocal dispersion cancellation configuration has essentially identical quantum and classical explanations except for the contrast obtained, which is much higher in the quantum case than it is in the classical case. This work bears on Franson’s recent article [J. D. Franson, Phys. Rev. A 80, 032119 (2009)], which asserts that there is no classical explanation for all the features seen in quantum nonlocal dispersion cancellation.