Large spin relaxation rates in trapped submerged-shell atoms
Spin relaxation due to atom–atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er–Er and Tm–Tm collisions are 3.0×10[superscript -10] and 1.1×10[superscript -10] cm[superscript 3] s[superscript -1], respectively, 2–3 or...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Physical Society
2010
|
Online Access: | http://hdl.handle.net/1721.1/56256 https://orcid.org/0000-0002-9528-3044 |
Summary: | Spin relaxation due to atom–atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er–Er and Tm–Tm collisions are 3.0×10[superscript -10] and 1.1×10[superscript -10] cm[superscript 3] s[superscript -1], respectively, 2–3 orders of magnitude larger than those observed for highly magnetic S-state atoms. This is strong evidence for an additional, dominant, spin relaxation mechanism, electronic interaction anisotropy, in collisions between these “submerged-shell,” L≠0 atoms. These large spin relaxation rates imply that evaporative cooling of these atoms in a magnetic trap will be highly inefficient. |
---|