First-principles theory of orbital magnetization

Within density-functional theory we compute the orbital magnetization for periodic systems evaluating a recently discovered Berry-phase formula. For the ferromagnetic metals Fe, Co, and Ni we explicitly calculate the contribution of the interstitial regions neglected so far in literature. We also us...

Full description

Bibliographic Details
Main Authors: Ceresoli, Davide, Gerstmann, Uwe, Seitsonen, Ari P., Mauri, Francesco
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:en_US
Published: American Physical Society 2010
Online Access:http://hdl.handle.net/1721.1/56261
https://orcid.org/0000-0002-9831-0773
Description
Summary:Within density-functional theory we compute the orbital magnetization for periodic systems evaluating a recently discovered Berry-phase formula. For the ferromagnetic metals Fe, Co, and Ni we explicitly calculate the contribution of the interstitial regions neglected so far in literature. We also use the orbital magnetization to compute the electron paramagnetic resonance g tensor in paramagnetic systems. Here the method can also be applied in cases where linear-response theory fails, e.g., radicals and defects with an orbital-degenerate ground state or those containing heavy atoms.