Theory of the Thermal Hall Effect in Quantum Magnets

We present a theory of the thermal Hall effect in insulating quantum magnets, where the heat current is totally carried by charge-neutral objects such as magnons and spinons. Two distinct types of thermal Hall responses are identified. For ordered magnets, the intrinsic thermal Hall effect for magno...

Full description

Bibliographic Details
Main Authors: Katsura, Hosho, Nagaosa, Naoto, Lee, Patrick A.
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: American Physical Society 2010
Online Access:http://hdl.handle.net/1721.1/57472
https://orcid.org/0000-0001-7809-8157
Description
Summary:We present a theory of the thermal Hall effect in insulating quantum magnets, where the heat current is totally carried by charge-neutral objects such as magnons and spinons. Two distinct types of thermal Hall responses are identified. For ordered magnets, the intrinsic thermal Hall effect for magnons arises when certain conditions are satisfied for the lattice geometry and the underlying magnetic order. The other type is allowed in a spin liquid which is a novel quantum state since there is no order even at zero temperature. For this case, the deconfined spinons contribute to the thermal Hall response due to Lorentz force. These results offer a clear experimental method to prove the existence of the deconfined spinons via a thermal transport phenomenon.