Analysis and design of axisymmetric transonic flow with linearized three-dimensional flow prediction

The primary goal of this thesis is the application of the proven stream-surface based Newton method to analysis/design of an axisymmetric nacelle with the actuator disk modeling of a fan. And to further utilize the benefits of the Newton method, full attention is given to the linearized prediction o...

Full description

Bibliographic Details
Main Author: Ahn, Jon
Format: Technical Report
Language:en_US
Published: Aerospace Computational Design Laboratory, Dept. of Aeronautics & Astronautics, Massachusetts Institute of Technology 2010
Online Access:http://hdl.handle.net/1721.1/57604
Description
Summary:The primary goal of this thesis is the application of the proven stream-surface based Newton method to analysis/design of an axisymmetric nacelle with the actuator disk modeling of a fan. And to further utilize the benefits of the Newton method, full attention is given to the linearized prediction of three-dimensional flow from a base axisymmetric solution, with an aim at replacing costly three-dimensional flow computations during initial nacelle design stages. The resulting code is to be called AMIS (Axisymmetric Multiple-passage Interacting Stream_surface Euler solver) to denote the lineage of Newton solver family pioneered by Drela and Giles, although AMIS has been built from scratch and share a few code lines.