Summary: | The primary goal of this thesis is the application of the proven stream-surface based Newton method to analysis/design of an axisymmetric nacelle with the actuator disk modeling of a fan. And to further utilize the benefits of the Newton method, full attention is given to the linearized prediction of three-dimensional flow from a base axisymmetric solution, with an aim at replacing costly three-dimensional flow computations during initial nacelle design stages. The resulting code is to be called AMIS (Axisymmetric Multiple-passage Interacting Stream_surface Euler solver) to denote the lineage of Newton solver family pioneered by Drela and Giles, although AMIS has been built from scratch and share a few code lines.
|