Massively Parallel Solver for the High-Order Galerkin Least-Squares Method

A high-order Galerkin Least-Squares (GLS) finite element discretization is combined with massively parallel implicit solvers. The stabilization parameter of the GLS discretization is modified to improve the resolution characteristics and the condition number for the high-order interpolation. The...

Full description

Bibliographic Details
Main Author: Yano, Masayuki
Format: Technical Report
Language:en_US
Published: Aerospace Computational Design Laboratory, Dept. of Aeronautics & Astronautics, Massachusetts Institute of Technology 2010
Online Access:http://hdl.handle.net/1721.1/57610
Description
Summary:A high-order Galerkin Least-Squares (GLS) finite element discretization is combined with massively parallel implicit solvers. The stabilization parameter of the GLS discretization is modified to improve the resolution characteristics and the condition number for the high-order interpolation. The Balancing Domain Decomposition by Constraints (BDDC) algorithm is applied to the linear systems arising from the two-dimensional, high-order discretization of the Poisson equation, the advectiondiffusion equation, and the Euler equation. The Robin-Robin interface condition is extended to the Euler equation using the entropy-symmetrized variables. The BDDC method maintains scalability for the high-order discretization for the diffusiondominated flows. The Robin-Robin interface condition improves the performance of the method significantly for the advection-diffusion equation and the Euler equation. The BDDC method based on the inexact local solvers with incomplete factorization maintains the scalability of the exact counterpart with a proper reordering.