Microporomechanical modeling of shale

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, February 2010.

Bibliographic Details
Main Author: Ortega, J. Alberto (Jose Alberto)
Other Authors: Franz-Josef Ulm.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/57784
_version_ 1811091159955537920
author Ortega, J. Alberto (Jose Alberto)
author2 Franz-Josef Ulm.
author_facet Franz-Josef Ulm.
Ortega, J. Alberto (Jose Alberto)
author_sort Ortega, J. Alberto (Jose Alberto)
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, February 2010.
first_indexed 2024-09-23T14:57:57Z
format Thesis
id mit-1721.1/57784
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T14:57:57Z
publishDate 2010
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/577842019-04-12T23:12:37Z Microporomechanical modeling of shale Ortega, J. Alberto (Jose Alberto) Franz-Josef Ulm. Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. Civil and Environmental Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, February 2010. Cataloged from PDF version of thesis. Includes bibliographical references (p. 401-429). Shale, a common type of sedimentary rock of significance to petroleum and reservoir engineering, has recently emerged as a crucial component in the design of sustainable carbon and nuclear waste storage solutions and as a prolific natural gas source. Despite its importance, the highly heterogeneous and anisotropic nature of shale has challenged the theoretical modeling and prediction of its mechanical properties. This thesis presents a comprehensive microporomechanics framework for developing predictive models for shale poroelasticity and strength. Modeling is accomplished through a multi-scale approach, in which the experimental evidence gathered from novel nanoindentation techniques and conventional macroscopic tests informs the development of a suit of micromechanics tools for linking composition and microstructure to material performance. Based on a closed loop approach of calibration and validation of elastic and strength properties at different length scales, it was possible to deconstruct shale to the scale of an elementary material unit with mechanical behaviors governed by invariant properties, and to upscale these behaviors from the nanoscale to the macroscale of engineering applications. The elementary building block for elasticity is an anisotropic solid characterizing the in situ stiffness of highly consolidated clay. (cont.) This intrinsic behavior represents the composite response of clay platelets, interlayer galleries, and interparticle contacts, yielding an invariant stiffness with respect to clay mineralogy. The anisotropic nanogranular nature of the porous clay in shale as inferred from nanoindentation is confirmed through micromechanics modeling. The intrinsic anisotropy of the clay fabric is suggested as the dominant factor driving the multi-scale anisotropic poroelasticity of unfractured shale compared to the contributions of geometrical sources related to shapes and orientations of particles. For strength properties, the micromechanics approach revealed that the frictional behavior of the elementary unit of compacted clay is scale independent, whereas a scale effect modifies its cohesive behavior. Having established a fundamental material unit and the adequate micromechanics representation for the microstructure, the macroscopic diversity of shale predominantly depends on two volumetric properties derived from mineralogy and porosity: the clay packing density and the silt inclusion volume fraction. The proposed two-parameter microporoelastic and strength models represent appealing alternatives for use in geomechanics and geophysics applications. by J. Alberto Ortega. Ph.D. 2010-08-31T14:40:17Z 2010-08-31T14:40:17Z 2009 2010 Thesis http://hdl.handle.net/1721.1/57784 639333247 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 429 p. application/pdf Massachusetts Institute of Technology
spellingShingle Civil and Environmental Engineering.
Ortega, J. Alberto (Jose Alberto)
Microporomechanical modeling of shale
title Microporomechanical modeling of shale
title_full Microporomechanical modeling of shale
title_fullStr Microporomechanical modeling of shale
title_full_unstemmed Microporomechanical modeling of shale
title_short Microporomechanical modeling of shale
title_sort microporomechanical modeling of shale
topic Civil and Environmental Engineering.
url http://hdl.handle.net/1721.1/57784
work_keys_str_mv AT ortegajalbertojosealberto microporomechanicalmodelingofshale