Conductive Filler Morphology Effect on Performance of Ionic Polymer Conductive Network Composite Actuators
Several generations of ionic polymer metal composite (IPMC) actuators have been developed since 1992. It has been discovered that the composite electrodes which are composed of electronic and ionic conductors, have great impact on performance of ionic polymer actuators by affecting strain level, eff...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
SPIE
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/58549 https://orcid.org/0000-0003-3530-5819 |
Summary: | Several generations of ionic polymer metal composite (IPMC) actuators have been developed since 1992. It has been discovered that the composite electrodes which are composed of electronic and ionic conductors, have great impact on performance of ionic polymer actuators by affecting strain level, efficiency and speed. One of important factors in composite electrodes is the shape and morphology of electronic conductor fillers. In this paper, RuO2 nanoparticles and vertically aligned carbon nanotube (Va-CNT) are used as conductor fillers. Making use of unique properties of Va-CNT forests with ultrahigh volume fraction in Nafion nanocomposite, an ionic polymer actuator is developed. Ion transport speed is greatly increased along CNT alignment direction. The high elastic anisotropy, arising from the high modulus and volume fraction of Va-CNTs, enhances actuation strain while reducing the undesirable direction strain. More than 8% actuation strain under 4 volts with less than one second response time has been achieved. |
---|