Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion

Direct-drive implosions with 20-μm-thick glass shells were conducted on the Omega Laser Facility to test the performance of high-Z glass ablators for direct-drive, inertial confinement fusion. The x-ray signal caused by hot electrons generated by two-plasmon-decay instability was reduced by more th...

Celý popis

Podrobná bibliografie
Hlavní autoři: Smalyuk, V. A., Betti, R., Delettrez, J. A., Glebov, V. Yu., Meyerhofer, D. D., Radha, P. B., Regan, S. P., Sangster, T. C., Sanz, J., Seka, W., Stoecki, C., Yaakobi, B., Frenje, Johan A., Li, Chikang, Petrasso, Richard D., Seguin, Fredrick Hampton
Další autoři: Massachusetts Institute of Technology. Plasma Science and Fusion Center
Médium: Článek
Jazyk:en_US
Vydáno: American Physical Society 2010
On-line přístup:http://hdl.handle.net/1721.1/58747
https://orcid.org/0000-0002-6919-4881
https://orcid.org/0000-0002-1020-3501
_version_ 1826188603169964032
author Smalyuk, V. A.
Betti, R.
Delettrez, J. A.
Glebov, V. Yu.
Meyerhofer, D. D.
Radha, P. B.
Regan, S. P.
Sangster, T. C.
Sanz, J.
Seka, W.
Stoecki, C.
Yaakobi, B.
Frenje, Johan A.
Li, Chikang
Petrasso, Richard D.
Seguin, Fredrick Hampton
author2 Massachusetts Institute of Technology. Plasma Science and Fusion Center
author_facet Massachusetts Institute of Technology. Plasma Science and Fusion Center
Smalyuk, V. A.
Betti, R.
Delettrez, J. A.
Glebov, V. Yu.
Meyerhofer, D. D.
Radha, P. B.
Regan, S. P.
Sangster, T. C.
Sanz, J.
Seka, W.
Stoecki, C.
Yaakobi, B.
Frenje, Johan A.
Li, Chikang
Petrasso, Richard D.
Seguin, Fredrick Hampton
author_sort Smalyuk, V. A.
collection MIT
description Direct-drive implosions with 20-μm-thick glass shells were conducted on the Omega Laser Facility to test the performance of high-Z glass ablators for direct-drive, inertial confinement fusion. The x-ray signal caused by hot electrons generated by two-plasmon-decay instability was reduced by more than ~40× and hot-electron temperature by ~2× in the glass compared to plastic ablators at ignition-relevant drive intensities of ~1×10[superscript 15]  W/cm[superscript 2], suggesting reduced target preheat. The measured absorption and compression were close to 1D predictions. The measured soft x-ray production in the spectral range of ~2 to 4 keV was ~2× to 3× lower than 1D predictions, indicating that the shell preheat caused by soft x-rays is less than predicted. A direct-drive-ignition design based on glass ablators is introduced.
first_indexed 2024-09-23T08:02:17Z
format Article
id mit-1721.1/58747
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T08:02:17Z
publishDate 2010
publisher American Physical Society
record_format dspace
spelling mit-1721.1/587472022-09-23T10:26:11Z Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion Smalyuk, V. A. Betti, R. Delettrez, J. A. Glebov, V. Yu. Meyerhofer, D. D. Radha, P. B. Regan, S. P. Sangster, T. C. Sanz, J. Seka, W. Stoecki, C. Yaakobi, B. Frenje, Johan A. Li, Chikang Petrasso, Richard D. Seguin, Fredrick Hampton Massachusetts Institute of Technology. Plasma Science and Fusion Center Seguin, Fredrick Hampton Frenje, Johan A. Li, Chikang Petrasso, Richard D. Seguin, Fredrick Hampton Direct-drive implosions with 20-μm-thick glass shells were conducted on the Omega Laser Facility to test the performance of high-Z glass ablators for direct-drive, inertial confinement fusion. The x-ray signal caused by hot electrons generated by two-plasmon-decay instability was reduced by more than ~40× and hot-electron temperature by ~2× in the glass compared to plastic ablators at ignition-relevant drive intensities of ~1×10[superscript 15]  W/cm[superscript 2], suggesting reduced target preheat. The measured absorption and compression were close to 1D predictions. The measured soft x-ray production in the spectral range of ~2 to 4 keV was ~2× to 3× lower than 1D predictions, indicating that the shell preheat caused by soft x-rays is less than predicted. A direct-drive-ignition design based on glass ablators is introduced. United States. Dept. of Energy. Office of Inertial Confinement Fusion (Cooperative Agreement No. DE-FC52-08NA28302) University of Rochester New York State Energy Research and Development Authority 2010-09-29T13:30:12Z 2010-09-29T13:30:12Z 2010-04 2009-07 Article http://purl.org/eprint/type/JournalArticle 0031-9007 http://hdl.handle.net/1721.1/58747 Smalyuk, V.A. et al. "Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion." Physical Review Letters 104.16 (2010): 165002. © 2010 The American Physical Society https://orcid.org/0000-0002-6919-4881 https://orcid.org/0000-0002-1020-3501 en_US http://dx.doi.org/10.1103/PhysRevLett.104.165002 Physical Review Letters Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Physical Society APS
spellingShingle Smalyuk, V. A.
Betti, R.
Delettrez, J. A.
Glebov, V. Yu.
Meyerhofer, D. D.
Radha, P. B.
Regan, S. P.
Sangster, T. C.
Sanz, J.
Seka, W.
Stoecki, C.
Yaakobi, B.
Frenje, Johan A.
Li, Chikang
Petrasso, Richard D.
Seguin, Fredrick Hampton
Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
title Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
title_full Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
title_fullStr Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
title_full_unstemmed Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
title_short Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
title_sort implosion experiments using glass ablators for direct drive inertial confinement fusion
url http://hdl.handle.net/1721.1/58747
https://orcid.org/0000-0002-6919-4881
https://orcid.org/0000-0002-1020-3501
work_keys_str_mv AT smalyukva implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT bettir implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT delettrezja implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT glebovvyu implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT meyerhoferdd implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT radhapb implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT regansp implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT sangstertc implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT sanzj implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT sekaw implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT stoeckic implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT yaakobib implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT frenjejohana implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT lichikang implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT petrassorichardd implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion
AT seguinfredrickhampton implosionexperimentsusingglassablatorsfordirectdriveinertialconfinementfusion