Survival strategies for synthesized hardware systems
Survival is a key concern of many complex systems. A standard approach to maximizing the likelihood of survival is to attempt to produce a system that is as free of errors as possible. We instead propose a methodology that changes the semantics of the underlying development and execution environment...
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/58820 https://orcid.org/0000-0001-8095-8523 |
Summary: | Survival is a key concern of many complex systems. A standard approach to maximizing the likelihood of survival is to attempt to produce a system that is as free of errors as possible. We instead propose a methodology that changes the semantics of the underlying development and execution environments to cleanly and simply obtain survival guarantees that are difficult if not impossible to obtain with standard techniques. Examples of survival properties include continued execution in the face of addressing errors and guaranteed bounds on the amount of memory required during any execution of the system (even in the face of dynamic memory allocation).We summarize results for software implementations of these techniques and discuss issues and advantages that arise in the context of hardware implementations. |
---|