Sequential sparse matching pursuit

We propose a new algorithm, called sequential sparse matching pursuit (SSMP), for solving sparse recovery problems. The algorithm provably recovers a k-sparse approximation to an arbitrary n-dimensional signal vector x from only O(k log(n/k)) linear measurements of x. The recovery process takes time...

Full description

Bibliographic Details
Main Authors: Berinde, Radu, Indyk, Piotr
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Online Access:http://hdl.handle.net/1721.1/58832
https://orcid.org/0000-0002-7983-9524
Description
Summary:We propose a new algorithm, called sequential sparse matching pursuit (SSMP), for solving sparse recovery problems. The algorithm provably recovers a k-sparse approximation to an arbitrary n-dimensional signal vector x from only O(k log(n/k)) linear measurements of x. The recovery process takes time that is only near-linear in n. Preliminary experiments indicate that the algorithm works well on synthetic and image data, with the recovery quality often outperforming that of more complex algorithms, such as à ¿1 minimization.