Axel

Recent scientific findings suggest that some of the most interesting sites for future exploration of planetary surfaces lie in terrains that are currently inaccessible to conventional robotic rovers. To provide robust and flexible access to these terrains, we have been developing Axel, the robotic r...

Full description

Bibliographic Details
Main Authors: Abad-Manterola, Pablo, Edlund, Jeffrey A., Burdick, Joel W., Wu, Albert, Oliver, Thomas, Nesnas, Issa A. D., Cecava, Johanna
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/58853
Description
Summary:Recent scientific findings suggest that some of the most interesting sites for future exploration of planetary surfaces lie in terrains that are currently inaccessible to conventional robotic rovers. To provide robust and flexible access to these terrains, we have been developing Axel, the robotic rover. Axel is a lightweight two-wheeled vehicle that can access steep terrains and negotiate relatively large obstacles because of its actively managed tether and novel wheel design. This article reviews the Axel system and focuses on those system components that affect Axel's steep terrain mobility. Experimental demonstrations of Axel on sloped and rocky terrains are presented.