Performance and Complexity Tradeoffs of Space-Time Modulation and Coding Schemes

Wireless communication using multiple-input multiple-output (MIMO) systems improves throughput and enhances reliability for a given total transmit power. Achieving a higher data rate in MIMO systems requires utilizing an effective space-time coding and modulation scheme. The appropriate algorithm to...

Full description

Bibliographic Details
Main Authors: Chang, Nicholas B., Margetts, Adam R., McKellips, Andrew L.
Other Authors: Lincoln Laboratory
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Online Access:http://hdl.handle.net/1721.1/58942
Description
Summary:Wireless communication using multiple-input multiple-output (MIMO) systems improves throughput and enhances reliability for a given total transmit power. Achieving a higher data rate in MIMO systems requires utilizing an effective space-time coding and modulation scheme. The appropriate algorithm to use for a system will depend on parameters such as the number of transmit/receive antennas, target spectral efficiency, complexity limitations, channel environment, and other factors. In this paper, we examine the performance of various two-transmit and four-transmit space-time coding schemes under different channel types and target data rates. We compare the performance of state of the art space-time coding schemes including direct non-binary LDPC GF(q) modulation, bit interleaved coded modulation using iterative detection, and space-time trellis coded modulation. We obtain a tradeoff between performance and complexity of these various schemes.