Language model parameter estimation using user transcriptions

In limited data domains, many effective language modeling techniques construct models with parameters to be estimated on an in-domain development set. However, in some domains, no such data exist beyond the unlabeled test corpus. In this work, we explore the iterative use of the recognition hypothes...

Full description

Bibliographic Details
Main Authors: Hsu, Bo-June, Glass, James R.
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/58944
https://orcid.org/0000-0002-3097-360X
Description
Summary:In limited data domains, many effective language modeling techniques construct models with parameters to be estimated on an in-domain development set. However, in some domains, no such data exist beyond the unlabeled test corpus. In this work, we explore the iterative use of the recognition hypotheses for unsupervised parameter estimation. We also evaluate the effectiveness of supervised adaptation using varying amounts of user-provided transcripts of utterances selected via multiple strategies. While unsupervised adaptation obtains 80% of the potential error reductions, it is outperformed by using only 300 words of user transcription. By transcribing the lowest confidence utterances first, we further obtain an effective word error rate reduction of 0.6%.