Language model parameter estimation using user transcriptions
In limited data domains, many effective language modeling techniques construct models with parameters to be estimated on an in-domain development set. However, in some domains, no such data exist beyond the unlabeled test corpus. In this work, we explore the iterative use of the recognition hypothes...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/58944 https://orcid.org/0000-0002-3097-360X |
Summary: | In limited data domains, many effective language modeling techniques construct models with parameters to be estimated on an in-domain development set. However, in some domains, no such data exist beyond the unlabeled test corpus. In this work, we explore the iterative use of the recognition hypotheses for unsupervised parameter estimation. We also evaluate the effectiveness of supervised adaptation using varying amounts of user-provided transcripts of utterances selected via multiple strategies. While unsupervised adaptation obtains 80% of the potential error reductions, it is outperformed by using only 300 words of user transcription. By transcribing the lowest confidence utterances first, we further obtain an effective word error rate reduction of 0.6%. |
---|