Sparse and low-rank matrix decompositions

We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard...

Full description

Bibliographic Details
Main Authors: Chandrasekaran, Venkat, Sanghavi, Sujay, Parrilo, Pablo A., Willsky, Alan S.
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Online Access:http://hdl.handle.net/1721.1/58946
https://orcid.org/0000-0003-1132-8477
https://orcid.org/0000-0003-0149-5888
Description
Summary:We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard in general. In this paper we develop (a) a new uncertainty principle for matrices, and (b) a simple method for exact decomposition based on convex optimization. Our uncertainty principle is a quantification of the notion that a matrix cannot be sparse while having diffuse row/column spaces. It characterizes when the decomposition problem is ill-posed, and forms the basis for our decomposition method and its analysis. We provide deterministic conditions - on the sparse and low-rank components - under which our method guarantees exact recovery.