A strategy for oligonucleotide microarray probe reduction
Background: One of the factors limiting the number of genes that can be analyzed on high-density oligonucleotide arrays is that each transcript is probed by multiple oligonucleotide probes. To reduce the number of probes required for each gene, a systematic approach to choosing the most representati...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
BioMed Central Ltd
2010
|
Online Access: | http://hdl.handle.net/1721.1/59013 |
Summary: | Background: One of the factors limiting the number of genes that can be analyzed on high-density oligonucleotide arrays is that each transcript is probed by multiple oligonucleotide probes. To reduce the number of probes required for each gene, a systematic approach to choosing the most representative probes is needed. A method is presented for reducing the number of probes per gene while maximizing the fidelity to the original array design. Results: The methodology has been tested on a dataset comprising 317 Affymetrix HuGeneFL GeneChips. The performance of the original and reduced probe sets was compared in four cancer-classification problems. The results of these comparisons show that reduction of the probe set by 95% does not dramatically affect performance, and thus illustrate the feasibility of substantially reducing probe numbers without significantly compromising sensitivity and specificity of detection. Conclusions: The strategy described here is potentially useful for designing small, limited-probe genome-wide arrays for screening applications. |
---|