Raman spectroscopy of metallic carbon nanotubes
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/59217 |
_version_ | 1826217738849222656 |
---|---|
author | Farhat, Hootan |
author2 | Jing Kong. |
author_facet | Jing Kong. Farhat, Hootan |
author_sort | Farhat, Hootan |
collection | MIT |
description | Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010. |
first_indexed | 2024-09-23T17:08:23Z |
format | Thesis |
id | mit-1721.1/59217 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T17:08:23Z |
publishDate | 2010 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/592172019-04-13T00:10:20Z Raman spectroscopy of metallic carbon nanotubes Farhat, Hootan Jing Kong. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Massachusetts Institute of Technology. Dept. of Materials Science and Engineering. Materials Science and Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2010. Includes bibliographical references (p. 101-108). Metallic carbon nanotubes are one dimensional conductors that are both technologically promising for electronic applications, and scientifically interesting for studying the physics of low dimensional materials. In this thesis, we present a detailed study of the inelastic light scattering (Raman) spectrum of individual metallic carbon nanotubes, with a focus on the influence of electronic excitations and charged carriers. We have demonstrated that the frequency and linewidth of certain phonon modes of metallic carbon nanotubes depend strongly the Fermi energy, because they couple strongly to low lying electron hole pairs. Next, we report the first experimental observation of electronic Raman scattering in carbon nanotubes. This observation demonstrates that the same electron-hole pairs that participate in damping the optical phonons of metallic carbon nanotubes, may themselves scatter light, thus giving rise to an electronic Raman spectrum. An analysis of the Fermi level and laser energy dependence of the electronic Raman and phonon Raman contributions allows us to explain the asymmetric lineshape of the G-band phonon modes in terms of a Fano interference. In another experiment, we have shown that the charge-induced expansion and contraction of the the graphitic C-C bond length is different for metallic and semiconducting nanotubes. Finally, we have measured the Stokes and antiStokes intensities of the Raman modes in electrically contacted metallic nanotubes in order to determine their phonon populations during high-field electrical transport. The experiments reported here, have helped to clarify the origin of several features in the Raman spectra of metallic carbon nanotubes that have been heavily debated in recent years. These result also shed light on the way electronic excitations and charged carriers affect the physical properties of metallic carbon nanotubes. by Hootan Farhat. Ph.D. 2010-10-12T18:42:17Z 2010-10-12T18:42:17Z 2010 2010 Thesis http://hdl.handle.net/1721.1/59217 666378053 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 108 p. application/pdf Massachusetts Institute of Technology |
spellingShingle | Materials Science and Engineering. Farhat, Hootan Raman spectroscopy of metallic carbon nanotubes |
title | Raman spectroscopy of metallic carbon nanotubes |
title_full | Raman spectroscopy of metallic carbon nanotubes |
title_fullStr | Raman spectroscopy of metallic carbon nanotubes |
title_full_unstemmed | Raman spectroscopy of metallic carbon nanotubes |
title_short | Raman spectroscopy of metallic carbon nanotubes |
title_sort | raman spectroscopy of metallic carbon nanotubes |
topic | Materials Science and Engineering. |
url | http://hdl.handle.net/1721.1/59217 |
work_keys_str_mv | AT farhathootan ramanspectroscopyofmetalliccarbonnanotubes |