Rank priors for continuous non-linear dimensionality reduction

Discovering the underlying low-dimensional latent structure in high-dimensional perceptual observations (e.g., images, video) can, in many cases, greatly improve performance in recognition and tracking. However, non-linear dimensionality reduction methods are often susceptible to local minima and pe...

Descripció completa

Dades bibliogràfiques
Autors principals: Darrell, Trevor J., Urtasun, Raquel, Geiger, Andreas
Altres autors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Idioma:en_US
Publicat: Institute of Electrical and Electronics Engineers 2010
Accés en línia:http://hdl.handle.net/1721.1/59287