State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010.

Bibliographic Details
Main Author: Fenty, Ian Gouverneur
Other Authors: Carl Wunsch.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2010
Subjects:
Online Access:http://hdl.handle.net/1721.1/59575
_version_ 1826198733372522496
author Fenty, Ian Gouverneur
author2 Carl Wunsch.
author_facet Carl Wunsch.
Fenty, Ian Gouverneur
author_sort Fenty, Ian Gouverneur
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010.
first_indexed 2024-09-23T11:09:17Z
format Thesis
id mit-1721.1/59575
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T11:09:17Z
publishDate 2010
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/595752019-04-10T11:53:21Z State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model Fenty, Ian Gouverneur Carl Wunsch. Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology. Dept. of Earth, Atmospheric, and Planetary Sciences. Earth, Atmospheric, and Planetary Sciences. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2010. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student submitted PDF version of thesis. Includes bibliographical references (p. 262-277). Sea ice (SI) and ocean variability in marginal polar and subpolar seas are closely coupled. SI variability in the Labrador Sea is of climatic interest because of its relationship to deep convection/mode water formation, carbon sequestration, and Northern Hemisphere atmospheric patterns. Historically, quantifying the link between the region's observed SI and oceanic variability has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and SI observations with a three-dimensional time-evolving dynamically consistent numerical model. To elaborate upon the relationship between SI and ocean variability, a one year (1996- 1997) state estimate of the ocean and sea ice state in Labrador Sea and Baffin Bay is constructed and analyzed. The estimate is a synthesis of a regional coupled 32 km ocean and sea ice model with a suite of contemporary in situ and satellite hydrographic and SI data. The synthesis of SI data is made possible with the (novel) adjoint of a thermodynamic SI model. Model and data are made consistent, in a least-squares sense, by iteratively adjusting several control variables, such as ocean initial and lateral open boundary conditions and the atmospheric state, to minimize an uncertainty-weighted model-data misfit cost function. It is shown that the SI pack attains a state of quasi-equilibrium in mid-March during which net SI growth/melt approaches zero; newly-formed SI diverges from coastal areas and converges, via wind/ocean forcing, in the marginal ice zone (MIZ). It is further shown that SI converging in the MIZ is primarily ablated by turbulent ocean-SI enthalpy fluxes. The primary source of energy required for sustained MIZ ice ablation is revealed to be the sensible heat reservoir of the subtropical-origin subsurface waters. Enthalpy from the heat reservoir is entrained into the mixed layer via buoyancy loss-driven convective deepening and brought to the SI via vertical mixing. An analysis of ocean surface buoyancy fluxes reveals a critical role of low-salinity upper ocean anomalies for the advancement of SI seaward of the Arctic Water/Irminger Water thermohaline front. Anomalous low-salinity waters slow the rate of buoyancy loss-driven mixed layer deepening, shielding an advancing SI pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from SI meltwater release, both of which extend SI lifetimes. Preliminary analysis of two additional one-year state estimates (1992-1993, 2003-2004) suggests that interannual hydrographic variability provides a first-order explanation for SI maximum extent anomalies. Additional research on the mechanisms controlling the origin and distribution of upper ocean salinity anomalies is required to further understand observed SI variability in the northwest North Atlantic. by Ian Gouverneur Fenty. Ph.D. 2010-10-29T13:54:40Z 2010-10-29T13:54:40Z 2010 2010 Thesis http://hdl.handle.net/1721.1/59575 670420800 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 277p. application/pdf n-cn-nf Massachusetts Institute of Technology
spellingShingle Earth, Atmospheric, and Planetary Sciences.
Fenty, Ian Gouverneur
State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model
title State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model
title_full State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model
title_fullStr State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model
title_full_unstemmed State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model
title_short State estimation of the Labrador Sea with a coupled sea ice-ocean adjoint model
title_sort state estimation of the labrador sea with a coupled sea ice ocean adjoint model
topic Earth, Atmospheric, and Planetary Sciences.
url http://hdl.handle.net/1721.1/59575
work_keys_str_mv AT fentyiangouverneur stateestimationofthelabradorseawithacoupledseaiceoceanadjointmodel