Nonparametric obstruction detection for UWB localization

Ultra-wide bandwidth (UWB) transmission is a promising technology for indoor localization due to its fine delay resolution and obstacle-penetration capabilities. However, the presence of walls and other obstacles introduces a positive bias in distance estimates, severely degrading localization accur...

Full description

Bibliographic Details
Main Authors: Win, Moe Z., Gifford, Wesley Michael, Marano, Stefano, Wymeersch, Henk
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Online Access:http://hdl.handle.net/1721.1/59985
https://orcid.org/0000-0002-8573-0488
Description
Summary:Ultra-wide bandwidth (UWB) transmission is a promising technology for indoor localization due to its fine delay resolution and obstacle-penetration capabilities. However, the presence of walls and other obstacles introduces a positive bias in distance estimates, severely degrading localization accuracy. We have performed an extensive indoor measurement campaign with FCC-compliant UWB radios to quantify the effect of non-line-of-sight (NLOS) propagation. Based on this campaign, we extract key features that allow us to distinguish between NLOS and LOS conditions. We then propose a nonparametric approach based on support vector machines for NLOS identification, and compare it with existing parametric (i.e., model-based) approaches. Finally, we evaluate the impact on localization through Monte Carlo simulation. Our results show that it is possible to improve positioning accuracy relying solely on the received UWB signal.