Dual Threshold Voltage Integrated Organic Technology for Ultralow-power Circuits
For the first time, we demonstrate control of organic thinfilm transistor's (OTFT) threshold voltage (V [subscript T]) by modifying the gate work function. We present a near-room-temperature, fully lithographic process to fabricate integrated pentacene dual V [subscript T] OTFTs suitable for la...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2010
|
Online Access: | http://hdl.handle.net/1721.1/60019 https://orcid.org/0000-0003-3001-9223 https://orcid.org/0000-0002-0960-2580 https://orcid.org/0000-0002-0413-8774 |
Summary: | For the first time, we demonstrate control of organic thinfilm transistor's (OTFT) threshold voltage (V [subscript T]) by modifying the gate work function. We present a near-room-temperature, fully lithographic process to fabricate integrated pentacene dual V [subscript T] OTFTs suitable for large-area and flexible mixed signal circuits. Platinum and aluminum are used as the gate metals for the high V [subscript T] (more depletion-like) and low V [subscript T] (more enhancement-like) p-channel devices, respectively. The availability of a high V [subscript T] device enables area-efficient zero-VGS current source loads. We demonstrate positive noise margin inverters which use pico Watts of power and a 3 V supply. Compared to a single V [subscript T] implementation, the dual V [subscript T] inverter occupies an area that is 30Ã Â smaller, and is 17Ã Â faster. These results show that p-channel only organic technologies can produce functional and low-power circuits without integrating a complementary device. |
---|