Distributed Control of Spacecraft Formation via Cyclic Pursuit: Theory and Experiments

In this paper we study distributed control policies for spacecraft formations that draw inspiration from the simple idea of cyclic pursuit. First, we extend existing cyclic-pursuit control laws devised for single-integrator models in two dimensions to the case of double-integrator models in three di...

Full description

Bibliographic Details
Main Authors: Ramirez, Jaime L., Pavone, Marco, Frazzoli, Emilio, Miller, David W.
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2010
Online Access:http://hdl.handle.net/1721.1/60265
https://orcid.org/0000-0001-6099-0614
https://orcid.org/0000-0002-0505-1400
Description
Summary:In this paper we study distributed control policies for spacecraft formations that draw inspiration from the simple idea of cyclic pursuit. First, we extend existing cyclic-pursuit control laws devised for single-integrator models in two dimensions to the case of double-integrator models in three dimensions. In particular, we develop control laws that only require relative measurements of position and velocity with respect to the two leading neighbors in the ring topology of cyclic pursuit, and allow the spacecraft to converge to a variety of symmetric formations, including evenly spaced circular formations and evenly spaced Archimedes' spirals. Second, we discuss potential applications, including spacecraft coordination for interferometric imaging and convergence to zero-effort orbits. Finally, we present and discuss experimental results obtained by implementing the aforementioned control laws on three nanospacecraft on board the International Space Station.