Ferroelectricity in strained Ca0.5Sr0.5TiO3 from first principles

We present a density-functional theory investigation of strained Ca[subscript 0.5]Sr[subscript 0.5]TiO[subscript 3] (CSTO). We have determined the structure and polarization for a number of arrangements of Ca and Sr in a 2×2×2 supercell. The a and b lattice vectors are strained to match the lattice...

Full description

Bibliographic Details
Main Authors: Halilov, Samed, Ashman, Christopher R., Hellberg, C. Stephen
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:en_US
Published: American Physical Society 2011
Online Access:http://hdl.handle.net/1721.1/60914
Description
Summary:We present a density-functional theory investigation of strained Ca[subscript 0.5]Sr[subscript 0.5]TiO[subscript 3] (CSTO). We have determined the structure and polarization for a number of arrangements of Ca and Sr in a 2×2×2 supercell. The a and b lattice vectors are strained to match the lattice constants of the rotated Si(001) face. To set the context for the CSTO study, we also include simulations of the Si(001) constrained structures for CaTiO[sibscrript 3] and SrTiO[subscript 3]. Our primary findings are that all Ca[subscript 0.5]Sr[subscript 0.5]TiO[subscript 3] structures examined except one are ferroelectric, exhibiting polarizations ranging from 0.08 C/m[superscript 2] for the lowest energy configuration to about 0.26 C/m[superscript 2] for the higher energy configurations. We find that the configurations with larger polarizations have lower c/a ratios. The net polarization of the cell is the result of Ti-O ferroelectric displacements regulated by A-site cations.