Nonlinear dynamics of three-dimensional solitary waves

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.

Bibliographic Details
Main Author: Cho, Yeunwoo, 1973-
Other Authors: Triantaphyllos R. Akylas.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2011
Subjects:
Online Access:http://hdl.handle.net/1721.1/61595
_version_ 1826207613890592768
author Cho, Yeunwoo, 1973-
author2 Triantaphyllos R. Akylas.
author_facet Triantaphyllos R. Akylas.
Cho, Yeunwoo, 1973-
author_sort Cho, Yeunwoo, 1973-
collection MIT
description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
first_indexed 2024-09-23T13:52:17Z
format Thesis
id mit-1721.1/61595
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T13:52:17Z
publishDate 2011
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/615952019-04-12T10:23:56Z Nonlinear dynamics of three-dimensional solitary waves Cho, Yeunwoo, 1973- Triantaphyllos R. Akylas. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Mechanical Engineering. Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010. Cataloged from PDF version of thesis. Includes bibliographical references (p. 105-108). In problems of dispersive wave propagation governed by two distinct restoring-force mechanisms, the phase speed of linear sinusoidal wavetrains may feature a minimum, cmin, at non-zero wavenumber, kmin. Examples include waves on the surface of a liquid in the presence of both gravity and surface tension, flexural waves on a floating ice sheet, in which case capillarity is replaced by the flexural rigidity of the ice, and internal gravity waves in layered flows in the presence of interfacial tension. The focus here is on deep-water gravity-capillary waves, where cmin = 23 cm/s with corresponding wavelength Amin = 27r/kmin = 1.71 cm. In this instance, ignoring viscous dissipation, cmin is known to be the bifurcation point of two-dimensional (plane) and three-dimensional (fully localized) solitary waves, often referred to as "lumps"; these are nonlinear disturbances that propagate at speeds below cmin without change of shape owing to a perfect balance between the opposing effects of wave dispersion and nonlinear steepening. Moreover, Cmin is a critical forcing speed, as the linear inviscid response to external forcing moving at Cmin grows unbounded in time, and nonlinear effects as well as viscous dissipation are expected to play important parts near this resonance. In the present thesis, various aspects of the dynamics of gravity-capillary lumps are investigated theoretically. Specifically, it is shown that steep gravity-capillary lumps of depression can propagate stably and they are prominent nonlinear features of the forced response near resonant conditions, in agreement with companion experiment for the generation of gravity-capillary lumps on deep water. These findings are relevant to the generation of ripples by wind and to the wave drag associated with the motion of small bodies on a free surface. by Yeunwoo Cho. Ph.D. 2011-03-07T15:20:36Z 2011-03-07T15:20:36Z 2010 2010 Thesis http://hdl.handle.net/1721.1/61595 704294123 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 108 p. application/pdf Massachusetts Institute of Technology
spellingShingle Mechanical Engineering.
Cho, Yeunwoo, 1973-
Nonlinear dynamics of three-dimensional solitary waves
title Nonlinear dynamics of three-dimensional solitary waves
title_full Nonlinear dynamics of three-dimensional solitary waves
title_fullStr Nonlinear dynamics of three-dimensional solitary waves
title_full_unstemmed Nonlinear dynamics of three-dimensional solitary waves
title_short Nonlinear dynamics of three-dimensional solitary waves
title_sort nonlinear dynamics of three dimensional solitary waves
topic Mechanical Engineering.
url http://hdl.handle.net/1721.1/61595
work_keys_str_mv AT choyeunwoo1973 nonlineardynamicsofthreedimensionalsolitarywaves