SVM-RFE With MRMR Filter for Gene Selection

We enhance the support vector machine recursive feature elimination (SVM-RFE) method for gene selection by incorporating a minimum-redundancy maximum-relevancy (MRMR) filter. The relevancy of a set of genes are measured by the mutual information among genes and class labels, and the redundancy is gi...

Full description

Bibliographic Details
Main Authors: Mundra, Piyushkumar A., Rajapakse, Jagath
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers 2011
Online Access:http://hdl.handle.net/1721.1/62171
Description
Summary:We enhance the support vector machine recursive feature elimination (SVM-RFE) method for gene selection by incorporating a minimum-redundancy maximum-relevancy (MRMR) filter. The relevancy of a set of genes are measured by the mutual information among genes and class labels, and the redundancy is given by the mutual information among the genes. The method improved identification of cancer tissues from benign tissues on several benchmark datasets, as it takes into account the redundancy among the genes during their selection. The method selected a less number of genes compared to MRMR or SVM-RFE on most datasets. Gene ontology analyses revealed that the method selected genes that are relevant for distinguishing cancerous samples and have similar functional properties. The method provides a framework for combining filter methods and wrapper methods of gene selection, as illustrated with MRMR and SVM-RFE methods.