A study of bubble wetting on surfaces

Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.

Bibliographic Details
Main Author: Day, Julia Katherine
Other Authors: Kripa Varanasi.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2011
Subjects:
Online Access:http://hdl.handle.net/1721.1/62747
_version_ 1811072399068626944
author Day, Julia Katherine
author2 Kripa Varanasi.
author_facet Kripa Varanasi.
Day, Julia Katherine
author_sort Day, Julia Katherine
collection MIT
description Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
first_indexed 2024-09-23T09:05:24Z
format Thesis
id mit-1721.1/62747
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T09:05:24Z
publishDate 2011
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/627472019-04-10T20:41:13Z A study of bubble wetting on surfaces Day, Julia Katherine Kripa Varanasi. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. Mechanical Engineering. Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010. Cataloged from PDF version of thesis. Includes bibliographical references (p. 53). In microfluidics, the formation of bubbles within devices obstructs flow and can damage the microfluidic chip or the samples contained therein. This thesis works toward a better understand of bubble wetting on surfaces, so that future microfluidics devices can be designed to be more robust and free of bubbles. Current wetting theory as applied to bubbles is examined, and two key areas for improvement are identified: disjoining pressure effects and gravitationaleffects. Wetting of textured surfaces is also analyzed for bubble application, leading to a prediction that a model based on a Cassie-Baxter analysis with knowledge of bubble wetting on a flat surface would be most accurate compared to other models. Dynamic and sessile bubble contact angles and droplet contact angles were measured on smooth acrylic, fluorosilanized silicon, glass, nylon, and silicon. These results were compared to the existing model, and the resulting error showed a strong correlation with a Pearson's correlation coefficient of 0.863 to the magnitude of the bubble contact angle hysteresis. Because contact angle hysteresis can be related to the disjoining pressure, these results were a good indicator that disjoining pressure should be considered in developing improved bubble wetting models. Dynamic and sessile bubble contact angles and droplet contact angles were also measured on four silicon samples with different surface textures. These results were compared to three existing wetting models as applied to bubble wetting, and it was found that the Cassie-Baxter model based on the bubble contact angle on a smooth silicon surface was most accurate, with an average percentage error of 0.8%. Finally, recommendations for further research to support developing models of bubble wetting are made. by Julia Katherine Day. S.B. 2011-05-09T15:29:27Z 2011-05-09T15:29:27Z 2010 2010 Thesis http://hdl.handle.net/1721.1/62747 717581724 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 53 p. application/pdf Massachusetts Institute of Technology
spellingShingle Mechanical Engineering.
Day, Julia Katherine
A study of bubble wetting on surfaces
title A study of bubble wetting on surfaces
title_full A study of bubble wetting on surfaces
title_fullStr A study of bubble wetting on surfaces
title_full_unstemmed A study of bubble wetting on surfaces
title_short A study of bubble wetting on surfaces
title_sort study of bubble wetting on surfaces
topic Mechanical Engineering.
url http://hdl.handle.net/1721.1/62747
work_keys_str_mv AT dayjuliakatherine astudyofbubblewettingonsurfaces
AT dayjuliakatherine studyofbubblewettingonsurfaces