Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.

Bibliographic Details
Main Author: Goel, Rahul, S.M. Massachusetts Institute of Technology
Other Authors: Laurence R. Young.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2011
Subjects:
Online Access:http://hdl.handle.net/1721.1/62878
_version_ 1811073070733983744
author Goel, Rahul, S.M. Massachusetts Institute of Technology
author2 Laurence R. Young.
author_facet Laurence R. Young.
Goel, Rahul, S.M. Massachusetts Institute of Technology
author_sort Goel, Rahul, S.M. Massachusetts Institute of Technology
collection MIT
description Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.
first_indexed 2024-09-23T09:28:08Z
format Thesis
id mit-1721.1/62878
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T09:28:08Z
publishDate 2011
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/628782019-04-11T01:42:58Z Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures Goel, Rahul, S.M. Massachusetts Institute of Technology Laurence R. Young. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. Aeronautics and Astronautics. Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student submitted PDF version of thesis. Includes bibliographical references (p. 123-130). A large percentage of combat troops suffered Traumatic Brain Injuries (TBI) due to Improvised Explosive Devices (IEDs) in recent wars in the Middle East. The majority of TBIs were caused by exposure to blast waves. Use of advanced body armor has decreased the number of fatalities due to impacts after the explosions, increasing the number of observed non-fatal brain injuries from the blast waves. A large number of TBIs due to impact hits are also reported in skiers, bicyclists, football players etc. A new design concept for the helmet liners is being proposed that introduces solid or fluid filler material in channels inside the helmet liner. The main emphasis has been to improve the attenuation of incoming shock waves in the Army helmets; however, some impacts studies were also carried out for sports helmets. Directed blast experiments in collaboration with Purdue University and numerical studies using the ConWep module available in ABAQUS v6.10 are carried out. Fluid fillers are modeled using the coupled Eulerian-Lagrangian (CEL) functionality of ABAQUS. Preliminary results using flat plate sandwich structures with rectangular channels show that the use of high density filler material results in higher levels of blast mitigation. The peak transmitted overpressure is substantially reduced, while the duration of the positive pressure pulse and the rise time are increased leading to reduced pressure gradients. Fluid filler materials were also found to be promising. Viscosity was not found to be a potential mechanism for blast mitigation as hypothesized. No significant advantage of using circular or criss-cross channel geometries was observed. Prototypes of the first design of the helmet liner with channels have been fabricated, and their testing is under way. Development of a numerical model to observe the response to blast of the modified liner coupled with the Army's Advanced Combat Helmet (ACH) and a human head is also currently in progress. Experimental impact studies were carried out comparing POC ski helmets with standard ski helmets. Over multiple impacts, POC ski helmets showed substantially lower peak accelerations. Different filler materials in the sandwich structures were drop tested. Both the numerical model and the experiments showed higher impact attenuation by the use of viscous fluid in the sandwich structures subjected to drop tests. by Rahul Goel. S.M. 2011-05-23T15:30:46Z 2011-05-23T15:30:46Z 2011 2011 Thesis http://hdl.handle.net/1721.1/62878 722781697 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 130 p. application/pdf Massachusetts Institute of Technology
spellingShingle Aeronautics and Astronautics.
Goel, Rahul, S.M. Massachusetts Institute of Technology
Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures
title Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures
title_full Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures
title_fullStr Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures
title_full_unstemmed Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures
title_short Study of an advanced helmet liner concept to reduce TBI : experiments & simulation using sandwich structures
title_sort study of an advanced helmet liner concept to reduce tbi experiments simulation using sandwich structures
topic Aeronautics and Astronautics.
url http://hdl.handle.net/1721.1/62878
work_keys_str_mv AT goelrahulsmmassachusettsinstituteoftechnology studyofanadvancedhelmetlinerconcepttoreducetbiexperimentssimulationusingsandwichstructures