Good formal structures for flat meromorphic connections, II: Excellent schemes
Given a flat meromorphic connection on an excellent scheme over a field of characteristic zero, we prove existence of good formal structures after blowing up; this extends a theorem of Mochizuki for algebraic varieties. The argument combines a numerical criterion for good formal structures from a pr...
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Mathematical Society
2011
|
Online Access: | http://hdl.handle.net/1721.1/63121 |
Summary: | Given a flat meromorphic connection on an excellent scheme over a field of characteristic zero, we prove existence of good formal structures after blowing up; this extends a theorem of Mochizuki for algebraic varieties. The argument combines a numerical criterion for good formal structures from a previous paper, with an analysis based on the geometry of an associated valuation space (Riemann-Zariski space). We obtain a similar result over the formal completion of an excellent scheme along a closed subscheme. If we replace the excellent scheme by a complex analytic variety, we obtain a similar but weaker result in which the blowup can only be constructed in a suitably small neighborhood of a prescribed point. |
---|