Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals

Beta-sheet protein domains are stabilized by weak hydrogen bonds, yet materials such as silk—whose ultimate tensile strength is controlled primarily by this secondary structure—can exceed the ultimate tensile strength of steel. Earlier work has suggested that this is because hydrogen bonds deform co...

Full description

Bibliographic Details
Main Authors: Qin, Zhao, Buehler, Markus J
Other Authors: Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Format: Article
Language:en_US
Published: American Physical Society 2011
Online Access:http://hdl.handle.net/1721.1/63128
https://orcid.org/0000-0002-4173-9659
_version_ 1811072356406263808
author Qin, Zhao
Buehler, Markus J
author2 Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
author_facet Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Qin, Zhao
Buehler, Markus J
author_sort Qin, Zhao
collection MIT
description Beta-sheet protein domains are stabilized by weak hydrogen bonds, yet materials such as silk—whose ultimate tensile strength is controlled primarily by this secondary structure—can exceed the ultimate tensile strength of steel. Earlier work has suggested that this is because hydrogen bonds deform cooperatively within small protein domains to reach the maximum strength. Here we study the atomistic mechanism of this concerted deformation mechanism by applying an elastic structural model, used to solve the deformation field of the chemical bonds in beta-sheet nanostructures under stretching and thereby identify the number of hydrogen bonds that deform cooperatively. Through this analysis, we predict the optimal beta-strand and beta-sheet nanocrystal size associated with reaching the maximum usage of hydrogen bonds under loading applied per unit material volume. Our results, albeit based on a simple model and analytical equations, quantitatively agree with results based on experimental and molecular-dynamics studies and provide physical insight into the underlying molecular mechanisms of weak bond cooperativity. A comparison with the size of hydrogen bond clusters in biology reveals excellent agreement with the cluster sizes predicted by our analysis, suggesting that perhaps the confinement of hydrogen bonds into nanoscale elements is a universal biological design paradigm that turns weakness to strength. The parameters used in this study could be modified and applied to other protein and polymer structures, which imply potential applications of our model in understanding the physics of deformation and failure in a broader range of biological and polymer materials, as well as in de novo biomaterial design.
first_indexed 2024-09-23T09:04:39Z
format Article
id mit-1721.1/63128
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T09:04:39Z
publishDate 2011
publisher American Physical Society
record_format dspace
spelling mit-1721.1/631282022-09-26T10:15:52Z Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals Qin, Zhao Buehler, Markus J Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics Buehler, Markus J. Qin, Zhao Buehler, Markus J. Beta-sheet protein domains are stabilized by weak hydrogen bonds, yet materials such as silk—whose ultimate tensile strength is controlled primarily by this secondary structure—can exceed the ultimate tensile strength of steel. Earlier work has suggested that this is because hydrogen bonds deform cooperatively within small protein domains to reach the maximum strength. Here we study the atomistic mechanism of this concerted deformation mechanism by applying an elastic structural model, used to solve the deformation field of the chemical bonds in beta-sheet nanostructures under stretching and thereby identify the number of hydrogen bonds that deform cooperatively. Through this analysis, we predict the optimal beta-strand and beta-sheet nanocrystal size associated with reaching the maximum usage of hydrogen bonds under loading applied per unit material volume. Our results, albeit based on a simple model and analytical equations, quantitatively agree with results based on experimental and molecular-dynamics studies and provide physical insight into the underlying molecular mechanisms of weak bond cooperativity. A comparison with the size of hydrogen bond clusters in biology reveals excellent agreement with the cluster sizes predicted by our analysis, suggesting that perhaps the confinement of hydrogen bonds into nanoscale elements is a universal biological design paradigm that turns weakness to strength. The parameters used in this study could be modified and applied to other protein and polymer structures, which imply potential applications of our model in understanding the physics of deformation and failure in a broader range of biological and polymer materials, as well as in de novo biomaterial design. United States. Air Force Office of Scientific Research (FA9550-08-1-0321) United States. Army Research Office (W911NF-10-0127) United States. Office of Naval Research (N000141010562) United States. Office of Naval Research (N000140810844) 2011-05-26T17:41:21Z 2011-05-26T17:41:21Z 2010-12 2010-10 Article http://purl.org/eprint/type/JournalArticle 1539-3755 1550-2376 http://hdl.handle.net/1721.1/63128 Qin, Zhao, and Markus J. Buehler. “Cooperative Deformation of Hydrogen Bonds in Beta-strands and Beta-sheet Nanocrystals.” Physical Review E 82.6 (2010) : 061906. © 2010 The American Physical Society https://orcid.org/0000-0002-4173-9659 en_US http://dx.doi.org/10.1103/PhysRevE.82.061906 Physical Review E Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Physical Society APS
spellingShingle Qin, Zhao
Buehler, Markus J
Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals
title Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals
title_full Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals
title_fullStr Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals
title_full_unstemmed Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals
title_short Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals
title_sort cooperative deformation of hydrogen bonds in beta strands and beta sheet nanocrystals
url http://hdl.handle.net/1721.1/63128
https://orcid.org/0000-0002-4173-9659
work_keys_str_mv AT qinzhao cooperativedeformationofhydrogenbondsinbetastrandsandbetasheetnanocrystals
AT buehlermarkusj cooperativedeformationofhydrogenbondsinbetastrandsandbetasheetnanocrystals