LQR-Trees: Feedback motion planning on sparse randomized trees
Recent advances in the direct computation of Lyapunov functions using convex optimization make it possible to efficiently evaluate regions of stability for smooth nonlinear systems. Here we present a feedback motion planning algorithm which uses these results to efficiently combine locally valid...
Autor principal: | Tedrake, Russell Louis |
---|---|
Otros Autores: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Formato: | Artículo |
Lenguaje: | en_US |
Publicado: |
MIT Press
2011
|
Acceso en línea: | http://hdl.handle.net/1721.1/64643 https://orcid.org/0000-0002-8712-7092 |
Ejemplares similares
-
Feedback-motion-planning with simulation-based LQR-trees
por: Reist, Philipp, et al.
Publicado: (2020) -
Simulation-based LQR-trees with input and state constraints
por: Tedrake, Russell Louis
Publicado: (2012) -
Robust post-stall perching with a simple fixed-wing glider using LQR-Trees
por: Moore, Joseph, et al.
Publicado: (2014) -
Funnel libraries for real-time robust feedback motion planning
por: Majumdar, Anirudha, et al.
Publicado: (2021) -
Stochastic parameter identification and control for LQR feedback control in robot periodic motion
por: Kazuki WATANABE, et al.
Publicado: (2024-12-01)