A simple combinatorial algorithm for submodular function minimization

This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, an...

Full description

Bibliographic Details
Main Authors: Iwata, Satoru, Orlin, James B.
Other Authors: Sloan School of Management
Format: Article
Language:en_US
Published: Society for Industrial and Applied Mathematics / Association for Computing Machinery 2011
Online Access:http://hdl.handle.net/1721.1/65187
https://orcid.org/0000-0002-7488-094X
_version_ 1811068419105095680
author Iwata, Satoru
Orlin, James B.
author2 Sloan School of Management
author_facet Sloan School of Management
Iwata, Satoru
Orlin, James B.
author_sort Iwata, Satoru
collection MIT
description This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O ((n4EO+n5)log nM) [O ((n superscript 4 EO + n superscript 5) log nM)] time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) [O ((n superscript 5 EO + n superscript 6) log n)] time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method.
first_indexed 2024-09-23T07:55:43Z
format Article
id mit-1721.1/65187
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T07:55:43Z
publishDate 2011
publisher Society for Industrial and Applied Mathematics / Association for Computing Machinery
record_format dspace
spelling mit-1721.1/651872022-09-30T01:03:07Z A simple combinatorial algorithm for submodular function minimization Iwata, Satoru Orlin, James B. Sloan School of Management Orlin, James B. Orlin, James B. This paper presents a new simple algorithm for minimizing submodular functions. For integer valued submodular functions, the algorithm runs in O(n6EO log nM) [O (n superscript 6 E O log nM)] time, where n is the cardinality of the ground set, M is the maximum absolute value of the function value, and EO is the time for function evaluation. The algorithm can be improved to run in O ((n4EO+n5)log nM) [O ((n superscript 4 EO + n superscript 5) log nM)] time. The strongly polynomial version of this faster algorithm runs in O((n5EO + n6) log n) [O ((n superscript 5 EO + n superscript 6) log n)] time for real valued general submodular functions. These are comparable to the best known running time bounds for submodular function minimization. The algorithm can also be implemented in strongly polynomial time using only additions, subtractions, comparisons, and the oracle calls for function evaluation. This is the first fully combinatorial submodular function minimization algorithm that does not rely on the scaling method. United States. Office of Naval Research ( ONR grant N00014-08-1-0029) 2011-08-17T19:04:12Z 2011-08-17T19:04:12Z 2009-01 Article http://purl.org/eprint/type/ConferencePaper 1071-9040 http://hdl.handle.net/1721.1/65187 Iwata, Satoru and James B. Orlin. "A simple combinatorial algorithm for submodular function minimization" Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009) https://orcid.org/0000-0002-7488-094X en_US http://portal.acm.org/citation.cfm?id=1496903 ACM-SIAM Symposium on Discrete Algorithms (SODA)(20th, 2009) Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ application/pdf Society for Industrial and Applied Mathematics / Association for Computing Machinery MIT web domain
spellingShingle Iwata, Satoru
Orlin, James B.
A simple combinatorial algorithm for submodular function minimization
title A simple combinatorial algorithm for submodular function minimization
title_full A simple combinatorial algorithm for submodular function minimization
title_fullStr A simple combinatorial algorithm for submodular function minimization
title_full_unstemmed A simple combinatorial algorithm for submodular function minimization
title_short A simple combinatorial algorithm for submodular function minimization
title_sort simple combinatorial algorithm for submodular function minimization
url http://hdl.handle.net/1721.1/65187
https://orcid.org/0000-0002-7488-094X
work_keys_str_mv AT iwatasatoru asimplecombinatorialalgorithmforsubmodularfunctionminimization
AT orlinjamesb asimplecombinatorialalgorithmforsubmodularfunctionminimization
AT iwatasatoru simplecombinatorialalgorithmforsubmodularfunctionminimization
AT orlinjamesb simplecombinatorialalgorithmforsubmodularfunctionminimization