Exploring quark transverse momentum distributions with lattice QCD

We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bilocal quark-quark operator connected by a straight Wilson line, allowing us to study...

Full description

Bibliographic Details
Main Authors: Musch, B. U., Hagler, Ph., Negele, John W., Schafer, A.
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics
Format: Article
Language:en_US
Published: American Physical Society 2011
Online Access:http://hdl.handle.net/1721.1/67006
https://orcid.org/0000-0002-5713-0039
Description
Summary:We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bilocal quark-quark operator connected by a straight Wilson line, allowing us to study T-even, “process-independent” TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and k⊥. Our calculations are based on domain wall valence quark propagators by the LHP Collaboration calculated on top of gauge configurations provided by the MILC Collaboration with Nf=2+1 asqtad-improved staggered sea quarks.