On the Dirichlet Prior and Bayesian Regularization
A common objective in learning a model from data is to recover its network structure, while the model parameters are of minor interest. For example, we may wish to recover regulatory networks from high-throughput data sources. In this paper we examine how Bayesian regularization using a Dirichle...
Main Authors: | , |
---|---|
Language: | en_US |
Published: |
2004
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/6702 |