Learning Classes Correlated to a Hierarchy
Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are ma...
Main Authors: | , |
---|---|
Language: | en_US |
Published: |
2004
|
Online Access: | http://hdl.handle.net/1721.1/6719 |
Summary: | Trees are a common way of organizing large amounts of information by placing items with similar characteristics near one another in the tree. We introduce a classification problem where a given tree structure gives us information on the best way to label nearby elements. We suggest there are many practical problems that fall under this domain. We propose a way to map the classification problem onto a standard Bayesian inference problem. We also give a fast, specialized inference algorithm that incrementally updates relevant probabilities. We apply this algorithm to web-classification problems and show that our algorithm empirically works well. |
---|