Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires
We report a strategy to significantly improve the ductility and achieve large superelastic and shape memory strains in polycrystalline Cu–Al–Ni shape memory alloys that are normally brittle. We use a liquid-phase (Taylor) wire forming process to obtain microwires of 10–150 μm diameter with a bamboo...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
American Institute of Physics
2012
|
Online Access: | http://hdl.handle.net/1721.1/69218 https://orcid.org/0000-0001-9856-2682 |
Summary: | We report a strategy to significantly improve the ductility and achieve large superelastic and shape memory strains in polycrystalline Cu–Al–Ni shape memory alloys that are normally brittle. We use a liquid-phase (Taylor) wire forming process to obtain microwires of 10–150 μm diameter with a bamboo grain structure. The reduction of grain boundary area, removal of triple junctions, and introduction of a high specific surface area in the wire decrease constraints on the martensitic transformation, and permit both superelasticity and stress-assisted two-way shape memory with recoverable strains as high as 6.8%. |
---|